Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(a^2+ab+b^2=a^2+\dfrac{2ab}{2}+\left(\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\)
\(=\left(a+\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\ge0\forall a,b\)
b)\(a^4+b^4\ge a^3b+ab^3\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a^3-b^3\right)\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\forall a,b\)
\(1.CMR:\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)
\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)=1+\frac{b}{a}+\frac{a}{b}+1=\frac{a}{b}+\frac{b}{a}+2\)
Áp dụng BĐT AM-GM ta có:
\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\)
\(\Rightarrow\frac{a}{b}+\frac{b}{a}+2\ge2+2=4\)
Dấu '' = '' xảy ra khi \(a=b\)
\(2.\\ a.CMR:a^2+2b^2+c^2-2ab-2bc\ge0\forall a,b,c\)
\(a^2+2b^2+c^2-2ab-2bc=a^2-2ab+b^2+c^2-2bc+b^2=\left(a-b\right)^2+\left(b-c\right)^2\ge0\forall a,b,c\)
Dấu '' = '' xảy ra khi \(a=b=c\)
\(b.CMR:a^2+b^2-4a+6b+13\ge0\forall a,b\)
\(a^2+b^2-4a+6b+13=\left(a^2-4a+4\right)+\left(b^2+6b+9\right)=\left(a-2\right)^2+\left(b+9\right)^2\ge0\forall a,b\)
Dấu '' = '' xảy ra khi \(\left\{{}\begin{matrix}a=2\\b=-9\end{matrix}\right.\)
\(\sqrt{ab}+\sqrt{cd}\le\sqrt{\left(a+c\right)\left(b+d\right)}\)
\(\Leftrightarrow ab+cd+2\sqrt{abcd}\le ab+bc+cd+da\)
\(\Leftrightarrow bc+da\ge2\sqrt{abcd}\)
\(\Leftrightarrow bc+da-2\sqrt{abcd}\ge0\)
\(\Leftrightarrow\left(\sqrt{bc}-\sqrt{da}\right)^2\ge0\) đúng \(\forall a,b,c,d>0\)
Áp dụng bđt AM-GM:
\(c^2+b^2\ge2bc\)
\(c^2+a^2\ge2ac\)
Cộng theo vế: \(2c^2+a^2+b^2\ge2c\left(a+b\right)\)
\("="\Leftrightarrow a=b=c\)
Ta có: \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\sqrt{\dfrac{2c}{a+b}}\)
\(=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{2c}{\sqrt{2c\left(a+b\right)}}\)
\(\ge\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{4c}{a+b+2c}=\dfrac{\left(a-b\right)^2\left(a+b+c\right)}{\left(b+c\right)\left(c+a\right)\left(a+b+2c\right)}\ge0\)
(đúng hiển nhiên)
Đẳng thức xảy ra khi $a=b=c.$
Em xem lại đoạn:
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{4c}{a+b+2c}=\frac{(a-b)^2(a+b+c)}{(b+c)(c+a)(a+b+2c)}\) bị nhầm rồi nè.
a. Xét $x\in A\cap (B\cup C)$
$\Rightarrow x\in A$ và $x\in B\cup C$
\(\Rightarrow \left\{\begin{matrix} x\in A\\ \left[\begin{matrix} x\in B\\ x\in C\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} x\in A\\ x\in B\end{matrix}\right.\\ \left\{\begin{matrix} x\in A\\ x\in C\end{matrix}\right.\end{matrix}\right.\Rightarrow x\in (A\cap B)\cup (A\cap C)(*)\)
Xét $x\in (A\cap B)\cup (A\cap C)$
$\Rightarrow x\in A\cap B$ hoặc $x\in A\cap C$
$\Rightarrow x\in A$ và $x\in B$ hoặc $x\in C$
Tức là: $x\in A\cap (B\cup C)(**)$
Từ $(*); (**)$ suy ra $A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$
b. Xét $x\in (A\setminus B)\setminus C$ bất kỳ
$\Rightarrow x\in A$ và $x\not\in B, x\not\in C$
Vì $x\in A, x\not\in C$ nên $x\in A\setminus C$
Do đó: $(A\setminus B)\setminus C\subset A\setminus C$
Xét a + b 8 với mọi a,b ≥ 0 ta có:
Áp dụng bất đẳng Cô-si cho hai số dương a + b và 2 a b ta được: