Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : A=2+22+23+...+210
=(2+22)+(23+24)+...+(29+210)
=2(1+2)+23(1+2)+...+29(1+2)
=2.3+23.3+...+29.3
Vì 3\(⋮\)3 nên 2.3+23.3+...+29.3\(⋮\)3
hay A\(⋮\)3
Vậy A\(⋮\)3.
Ta có: 2E= 2+2^2+2^3+2^4+...+2^10
2E - E = (2+2^2+2^3+2^4+...+2^10) - (1+2+2^2+2^3+...+2^9)
E = 2^10-1
S = 1 + 2 + 22 + 23 +...+ 29
2S = 2 + 22 + 23+...+ 29 + 210
2S - S = 210 - 1
S = 210 - 1
P = 5.20 = 5 < 7 = 23 - 1 < 210 -1 = S
S > P
A = 1 + 2 + 22 + 23 + ...+ 26 + 27
= ( 1 + 2) + ( 22 +23 ) +( 24 + 25 ) + ( 26 + 27) '' có tất cả 8 số chia thành 4 cặp nhé ''
=3 + 22. ( 1 + 2) + 24.(1+2) + 26. ( 1 + 2)
= 3 + 22 .3 + 24.3+ 26 .3
= 3. ( 1 +22 + 24 + 26 ) chia hết cho 3.
2 + 21 + 22 + 23 + ... + 211
= 20 + 21 + 22 + 23 + ... + 211
= 20 . ( 1 + 2 + 4 + 8 + 16 + 32 ) + 26 . ( 1 + 2 + 4 + 8 + 16 + 32 )
= 20 . 63 + 26 . 63
= ( 20 + 26 ) . 63
Do 63 : 9 nên ( 20 + 26 ) . 63 chia hết cho 9 hay 2 + 21 + 22 + 23 + .. + 211 chia hết cho 9
Vậy 2 + 21 + 22 + 23 + ... + 211 chia hết cho 9
Vì a có 60 lũy thừa ( mà 60 chia hết cho 3 ) nên ta có thể chia A thành các nhóm gồm mỗi nhóm 3 lũy thừa như sau :
A = \(2+2^2+2^3+...+2^{59}+2^{60}\)
A = \(\left(2+2^2+2^3\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
A = \(2.\left(1+2+2^2\right)+...+2^{58}.\left(1+2+2^2\right)\)
A = \(2.7+...+2^{58}.7\)
A = \(7.\left(2+...+2^{58}\right)\)
Vậy A \(⋮\)7
Ủng hộ mik nhá ^_^"
Ý bạn là:
Cho \(S=2+2^2+2^3+...+2^{95}+2^{96}.\)Chứng tỏ \(S⋮24\)
Nếu thế thì mình giải cho
Ý bn là:
Cho \(S=2+2^2+2^3+...+2^{95}+2^{96}.\)Chứng tỏ \(S⋮24\)
Nếu vậy thì mình giải cho
Nhanh lên mọi người ơi
2+22+23+....+28+29
=(2+22+23)+....+(27+28+29)
=(2+22+23)+....+26.(2+22+23)
=14+...+26+14
=14.(1+.....+26) \(⋮\)14
Vậy 2+22+23+...+28+29 \(⋮\)14
Chúc bn học tốt