\(x^2-2\left(m+1\right)x+2m=0\) có 2 nghiệm phân biệt với mọi m.<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2019

\(x^2-2\left(m+1\right)x+2m=0\)

\(\Delta'=\left(m+1\right)^2-2m\)

\(=m^2+2m+1-2m\)

\(=m^2+1>0\forall m\)

Do \(\Delta'>0\forall m\) nên phương trình luôn có 2 nghiệm phân biệt.

Ta có đpcm.

a) Xét \(\Delta=\left(m+1\right)^2-2m+3=m^2+4>0,\forall m\)

Vậy PT luôn có 2 nghiệm phân biệt.

b) \(f\left(x\right)=x^2-\left(m+1\right)x+2m-3=0\)có nghiệm \(x=3\)khi và chỉ khi

\(f\left(3\right)=0\Leftrightarrow3^2-\left(m+1\right).3+2m-3=0\Leftrightarrow3-m=0\Leftrightarrow m=3\)

14 tháng 5 2020

Xét \(x^2-\left(2m+1\right)x-3=0\left(1\right)\)

PT (1) có a.c=\(1\cdot\left(-3\right)=-3< 0\)

=> PT (1) luôn có 2 nghiệm phân biệt trái dấu với mọi m

Mà \(x_1< x_2\left(gt\right)\)nên x1<0 và x2>0 => \(\hept{\begin{cases}\left|x_1\right|=-x_1\\\left|x_2\right|=x_2\end{cases}}\)

Áp dụng hệ thức Vi-et ta có \(x_1+x_2=2m+1\)

Theo bài ra \(\left|x_1\right|-\left|x_2\right|=5\Rightarrow-x_1-x_2=5\Leftrightarrow x_1+x_2=-5\Leftrightarrow2m+1=-5\Leftrightarrow m=-3\)

Xét phương trình : \(x^2-\left(2m+3\right)x+m=0\)

Ta có : \(\Delta=\left[-\left(2m+3\right)\right]^2-4.1.m\)

\(=4m^2+12m+9-4m=4m^2+8m+9\)

\(=\left(2m+2\right)^2+5\)

Có : \(\left(2m+2\right)\ge0\forall m\Rightarrow\left(2m+2\right)^2+5>0\)

\(\Rightarrow\)phương trình luôn có hai nghiệm phân biệt \(x_1\)\(x_2\)

Theo hệ thức VI-ÉT ta có :

\(\hept{\begin{cases}x_1+x_2=2m+3\\x_1.x_2=m\end{cases}\left(^∗\right)}\)

Có : \(K=x^2_1+x_2^2=\left(x_1+x_2\right)^2-2x_1.x_2\)

Thay \(\left(^∗\right)\)vào K ta được :

\(K=\left(2m+3\right)^2-2m\)

\(\Leftrightarrow K=4m^2+12m+9-2m\)

\(\Leftrightarrow K=4m^2+10m+9\)

\(\Leftrightarrow K=\left(2m+\frac{5}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)

Vậy \(K_{min}=\frac{11}{4}\) đạt đc khi \(2m+\frac{5}{2}=0\Leftrightarrow m=-\frac{5}{4}\)

27 tháng 11 2015

Ta có: 2m2 + 3 + n2 > 0 . Xét:

\(\Delta=\left(m-1\right)^2+4\left(2m^2+n^2+3\right)\left(m^2-2mn+n^2+2\right)\)

\(=m^2-2m+1+4\left(2m^4-4m^3n+3m^2n^2+2m^2-2mn^3+n^4+5n^2+3m^2-6mn+6\right)\)

\(=m^2-2m+1+8m^4-16m^3n+12m^2n^2+8m^2-8mn^3+4n^4+20n^2+12m^2-26mn+24\)\(=8m^4+4n^4-16m^3n-8mn^3+12m^2n^2+21m^2+20n^2-26mn-2m+25\)

 

27 tháng 11 2015

đồng ý kiến với Tạ Duy Phương

5 tháng 3 2022

Ta có:\(\Delta'=m^2-\left(2m-3\right)=m^2-2m+3=\left(m^2-2m+1\right)+2=\left(m-1\right)^2+2>0\)

Suy ra pt luôn có 2 nghiệm phân biệt

\(a) x^2 - 2mx + 2m - 3 = 0.\)

\(∆ ' = m^2 -(2m-3) = m^2 -2m +1 +2 = (m-1) ^2 +2\)

\((m+1) ^2 ≥0 <=> (m+1)^2 +2 ≥2 >0\)

\(=> ∆'>0 <=> PT\) luôn có 2 nghiệm \(PB\) với mọi m

꧁༺๖ۣ๖ۣۜSkyღ๖ۣۜlạnh☯๖ۣۜlùngɠɠ༻꧂

19 tháng 3 2020

\(x^2-\left(2m+1\right)x+m^2+m+1=0\)

2 nghiệm phân biệt khi

\(\Delta=\left(2m+1\right)^2-4\left(m^2+m+1\right)=0\)

=>\(\Delta=4m^2+4m+1-4m^2-4m-4=0\)

=>\(\Delta=-3< 0\)

b)\(\orbr{\begin{cases}x_1=\frac{2m+1-3}{2}=\frac{2m+1}{2}-\frac{3}{2}\\x_2=\frac{2m+1+3}{2}=\frac{2m+1}{2}+\frac{3}{2}\end{cases}}\)

\(x_1-x_2=-3\)