Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Để hàm số này là hàm bậc nhất thì
\(\hept{\begin{cases}\left(3n-1\right)\left(2m+3\right)=0\\4m+3\ne0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}n=\frac{1}{3}\\m=\frac{-3}{2}\end{cases}}\)
Các câu còn lại làm tương tự nhé bạn
\(n=0\Rightarrow x^2-2mx+2m-1=0\)
\(a+b+c=1-2m+2m-1=0\Rightarrow\) pt luôn có nghiệm với mọi m
\(\Delta=\left(2m-n\right)^2-4\left(2m+3m-1\right)\ge0\) (1)
Theo Viet ta có:
\(\left\{{}\begin{matrix}x_1+x_2=2m-n\\x_1x_2=2m+3n-1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x_1+x_2=-1\\\left(x_1+x_2\right)^2-2x_1x_2=13\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=-1\\x_1x_2=-6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2m-n=-1\\2m+3n-1=-6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2m-n=-1\\2m+3n=-5\end{matrix}\right.\) \(\Rightarrow m=n=-1\)
Thay vào (1) để thử thấy thỏa mãn, vậy ...
a) Xét \(\Delta=\left(m+1\right)^2-2m+3=m^2+4>0,\forall m\)
Vậy PT luôn có 2 nghiệm phân biệt.
b) \(f\left(x\right)=x^2-\left(m+1\right)x+2m-3=0\)có nghiệm \(x=3\)khi và chỉ khi
\(f\left(3\right)=0\Leftrightarrow3^2-\left(m+1\right).3+2m-3=0\Leftrightarrow3-m=0\Leftrightarrow m=3\)
\(x^2-\left(2m+1\right)x+m^2+m+1=0\)
2 nghiệm phân biệt khi
\(\Delta=\left(2m+1\right)^2-4\left(m^2+m+1\right)=0\)
=>\(\Delta=4m^2+4m+1-4m^2-4m-4=0\)
=>\(\Delta=-3< 0\)
b)\(\orbr{\begin{cases}x_1=\frac{2m+1-3}{2}=\frac{2m+1}{2}-\frac{3}{2}\\x_2=\frac{2m+1+3}{2}=\frac{2m+1}{2}+\frac{3}{2}\end{cases}}\)
\(x_1-x_2=-3\)
\(x^2-2\left(m+1\right)x+2m=0\)
Có \(\Delta'=\left(m+1\right)^2-2m\)
\(=m^2+2m+1-2m\)
\(=m^2+1>0\forall m\)
Do \(\Delta'>0\forall m\) nên phương trình luôn có 2 nghiệm phân biệt.
Ta có đpcm.
Xét \(\Delta=\left(5m-1\right)^2-4\left(6m^2-2m\right)\)
\(=m^2-2m+1=\left(m-1\right)^2\ge0,\forall m\)
=> Phương trình luôn có nghiệm với mọi m.
Ta có: 2m2 + 3 + n2 > 0 . Xét:
\(\Delta=\left(m-1\right)^2+4\left(2m^2+n^2+3\right)\left(m^2-2mn+n^2+2\right)\)
\(=m^2-2m+1+4\left(2m^4-4m^3n+3m^2n^2+2m^2-2mn^3+n^4+5n^2+3m^2-6mn+6\right)\)
\(=m^2-2m+1+8m^4-16m^3n+12m^2n^2+8m^2-8mn^3+4n^4+20n^2+12m^2-26mn+24\)\(=8m^4+4n^4-16m^3n-8mn^3+12m^2n^2+21m^2+20n^2-26mn-2m+25\)
đồng ý kiến với Tạ Duy Phương