Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta đã biết nếu G' là trọng tâm tam giác ABC thì:
\(\overrightarrow{G'A}+\overrightarrow{G'B}+\overrightarrow{G'C}=\overrightarrow{0}\).
Gỉa sử có điểm G thỏa mãn: \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\).
Ta sẽ chứng minh \(G\equiv G'\).
Thật vậy:
\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)
\(\Leftrightarrow3\overrightarrow{GG'}+\overrightarrow{G'A}+\overrightarrow{G'B}+\overrightarrow{G'C}=\overrightarrow{0}\)
\(\Leftrightarrow3\overrightarrow{GG'}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{GG'}=\overrightarrow{0}\).
Vậy \(G\equiv G'\).
\(T=\overrightarrow{GA}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)+\overrightarrow{GB}.\overrightarrow{CA}+\overrightarrow{GC}.\overrightarrow{AB}\)
\(=\overrightarrow{AB}\left(\overrightarrow{GC}-\overrightarrow{GA}\right)+\overrightarrow{AC}\left(\overrightarrow{GA}-\overrightarrow{GB}\right)\)
\(=\overrightarrow{AB}\left(\overrightarrow{GC}+\overrightarrow{AG}\right)+\overrightarrow{AC}\left(\overrightarrow{GA}+\overrightarrow{BG}\right)\)
\(=\overrightarrow{AB}.\overrightarrow{AC}+\overrightarrow{AC}.\overrightarrow{BA}\)
\(=0\)
Theo tính chất trọng tâm tam giác ta luôn có:
\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\Rightarrow\overrightarrow{GA}=-\overrightarrow{GB}-\overrightarrow{GC}\)
Thế vào đẳng thức giả thiết ta được:
\(BC.\left(-\overrightarrow{GB}-\overrightarrow{GC}\right)+AC.\overrightarrow{GB}+AB.\overrightarrow{GC}=\overrightarrow{0}\)
\(\Rightarrow\left(AC-BC\right)\overrightarrow{GB}=\left(BC-AB\right)\overrightarrow{GC}\) (1)
Mà \(\overrightarrow{GB};\overrightarrow{GC}\) không phải 2 vecto cùng phương
\(\Rightarrow\left(1\right)\) xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}AC-BC=0\\BC-AB=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}AC=BC\\AB=BC\end{matrix}\right.\)
\(\Rightarrow AB=AC=BC\) \(\Rightarrow\Delta ABC\) là tam giác đều
\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\Rightarrow\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)^2=0\)
\(\Rightarrow-2\left(\overrightarrow{GA}.\overrightarrow{GB}+\overrightarrow{GB}.\overrightarrow{GC}+\overrightarrow{GC}.\overrightarrow{GA}\right)=GA^2+GB^2+GC^2\)
\(\Rightarrow\overrightarrow{GA}.\overrightarrow{GB}+\overrightarrow{GB}.\overrightarrow{GC}+\overrightarrow{GC}.\overrightarrow{GA}=-\frac{1}{2}\left(\frac{2}{3}m_a^2+\frac{2}{3}m_b^2+\frac{2}{3}m_c^2\right)\)
\(=-\frac{1}{6}\left(AB^2+BC^2+CA^2\right)\)
Hình như đề bài sai dấu?
\(\text{Theo tính chất trọng tâm }:\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=0\\ \Rightarrow\frac{1}{2}\left(\overrightarrow{GA}+\overrightarrow{GB}\right)+\frac{1}{2}\left(\overrightarrow{GA}+\overrightarrow{GC}\right)+\frac{1}{2}\left(\overrightarrow{GB}+\overrightarrow{GC}\right)=0\\ \Rightarrow\frac{1}{2}\cdot2\overrightarrow{GC'}+\frac{1}{2}\cdot2\overrightarrow{GB'}+\frac{1}{2}\cdot2\overrightarrow{GA'}=0\\ \Rightarrow\overrightarrow{GC'}+\overrightarrow{GB'}+\overrightarrow{GA'}=0\)
Ta có:
\(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \Leftrightarrow \left( {\overrightarrow {GI} + \overrightarrow {IA} } \right) + \left( {\overrightarrow {GI} + \overrightarrow {IB} } \right) + \left( {\overrightarrow {GJ} + \overrightarrow {JC} } \right) + \left( {\overrightarrow {GJ} + \overrightarrow {JD} } \right) = \overrightarrow 0 \)
\( \Leftrightarrow 2\overrightarrow {GI} + \left( {\overrightarrow {IA} + \overrightarrow {IB} } \right) + 2\overrightarrow {GJ} + \left( {\overrightarrow {JC} + \overrightarrow {JD} } \right) = \overrightarrow 0 \)
\( \Leftrightarrow 2\overrightarrow {GI} + 2\overrightarrow {GJ} = \overrightarrow 0 \Leftrightarrow 2\left( {\overrightarrow {GI} + \overrightarrow {GJ} } \right) = \overrightarrow 0 \)
\( \Leftrightarrow \overrightarrow {GI} + \overrightarrow {GJ} = \overrightarrow 0 \Rightarrow \)G là trung điểm của đoạn thẳng IJ
Vậy I, G, J thẳng hàng
Ta có: \(\overrightarrow{GB}=\overrightarrow{GA}+\overrightarrow{AB}\)
\(\overrightarrow{GC}=\overrightarrow{GA}+\overrightarrow{AC}\)
\(\overrightarrow{GD}=\overrightarrow{GA}+\overrightarrow{AD}\)
Suy ra: \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GD}=4\overrightarrow{GA}+\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}=0\)
Gọi M là trung điểm BC \(\Rightarrow\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{0}\)
Ta có:
\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{GM}+\overrightarrow{MA}+\overrightarrow{GM}+\overrightarrow{MB}+\overrightarrow{GM}+\overrightarrow{MC}=\overrightarrow{0}\)
\(\Leftrightarrow3\overrightarrow{GM}+\overrightarrow{MA}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{GM}=\dfrac{1}{3}\overrightarrow{AM}\)
\(\Leftrightarrow\overrightarrow{GA}+\overrightarrow{AM}=\dfrac{1}{3}\overrightarrow{AM}\)
\(\Leftrightarrow\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AM}\)
\(\Rightarrow G\) là trọng tâm tam giác ABC