...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2017

Giải bài 7 trang 29 sgk Hình học 10 | Để học tốt Toán 10

\(\Rightarrow\)Vậy chọn đáp án C

CÁC BẠN GIẢI CHI TIẾT RỒI CHỌN ĐÁP ÁN ĐÚNG GIÙM MK VỚI ^.^ Câu 1: Cho tam giác ABC có trọng tâm G, M là trung điểm của BC. Phân tích \(\overrightarrow{AM}\) theo \(\overrightarrow{GB}\) và \(\overrightarrow{GC}\) A. \(\overrightarrow{AM}\) = \(\dfrac{3}{2}\) \(\overrightarrow{GB}\) -\(\dfrac{2}{3}\) \(\overrightarrow{GC}\) B. \(\overrightarrow{AM}\) = \(\dfrac{3}{2}\) \(\overrightarrow{GB}\) + \(\dfrac{3}{2}\) \(\overrightarrow{GC}\) C....
Đọc tiếp

CÁC BẠN GIẢI CHI TIẾT RỒI CHỌN ĐÁP ÁN ĐÚNG GIÙM MK VỚI ^.^

Câu 1: Cho tam giác ABC có trọng tâm G, M là trung điểm của BC. Phân tích \(\overrightarrow{AM}\) theo \(\overrightarrow{GB}\)\(\overrightarrow{GC}\)

A. \(\overrightarrow{AM}\) = \(\dfrac{3}{2}\) \(\overrightarrow{GB}\) -\(\dfrac{2}{3}\) \(\overrightarrow{GC}\)

B. \(\overrightarrow{AM}\) = \(\dfrac{3}{2}\) \(\overrightarrow{GB}\) + \(\dfrac{3}{2}\) \(\overrightarrow{GC}\)

C. \(\overrightarrow{AM}\) = \(\dfrac{3}{2}\) \(\overrightarrow{GB}\) - \(\dfrac{3}{2}\) \(\overrightarrow{GC}\)

D. \(\overrightarrow{AM}\) = \(\dfrac{2}{3}\) \(\overrightarrow{GB}\) + \(\dfrac{3}{2}\) \(\overrightarrow{GC}\)

Câu 2: Cho 4 điểm A, B, C, D. Tính \(\overrightarrow{u}\) = \(\overrightarrow{AB}\) + \(\overrightarrow{DC}\) + \(\overrightarrow{BD}\) + \(\overrightarrow{CA}\)

A. \(\dfrac{2}{3}\) \(\overrightarrow{AC}\) B. \(\overrightarrow{AC}\) C. \(\overrightarrow{0}\) D. 2 \(\overrightarrow{AC}\)

Câu 3: Khẳng định nào sau đây là đúng :

A. Hai vecto \(\overrightarrow{a}\) , k\(\overrightarrow{a}\) luôn cùng hướng

B. Hai vecto \(\overrightarrow{a}\) , k \(\overrightarrow{a}\) luôn cùng phương

C. Hai vecto \(\overrightarrow{a}\) , k \(\overrightarrow{a}\) bằng độ dài

D. Hai vecto \(\overrightarrow{a}\) , k \(\overrightarrow{a}\) luôn ngược hướng

Câu 4: Cho k ≠ 0, \(\overrightarrow{a}\)\(\overrightarrow{0}\) . k \(\overrightarrow{a}\)\(\overrightarrow{a}\) cùng hướng khi :

A. k tùy ý B. \(\left|k\right|\) lớn hơn 0 C. k < 0 D. k lớn hơn 0

Câu 5: Cho G là trọng tâm Δ ABC, O là điểm bất kỳ thì :

A. \(\overrightarrow{AG}\) = \(\dfrac{\overrightarrow{OB}+\overrightarrow{OC}}{2}\) B. \(\overrightarrow{AG}\)​ = \(\dfrac{\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{AC}}{3}\)

C. \(\overrightarrow{AG}\) = \(\dfrac{2}{3}\) ( \(\overrightarrow{AB}\) + \(\overrightarrow{AC}\) ) D. \(\overrightarrow{OA}\) + \(\overrightarrow{OB}\) + \(\overrightarrow{OC}\) = 3 \(\overrightarrow{OG}\)

3
AH
Akai Haruma
Giáo viên
29 tháng 11 2018

Câu 1:

Theo tính chất trọng tâm và đường trung tuyến, ta thấy \(\overrightarrow {AM}; \overrightarrow{GM}\) là 2 vecto cùng phương, cùng hướng và \(AM=3GM\)

\(\Rightarrow \overrightarrow{AM}=3\overrightarrow{GM}\)

\(=\frac{3}{2}(\overrightarrow{GM}+\overrightarrow{GM})\) \(=\frac{3}{2}(\overrightarrow{GB}+\overrightarrow{BM}+\overrightarrow{GC}+\overrightarrow{CM})\)

\(=\frac{3}{2}[(\overrightarrow{GB}+\overrightarrow{GC})+(\overrightarrow{BM}+\overrightarrow{CM})]\)

\(=\frac{3}{2}(\overrightarrow{GB}+\overrightarrow{GC})\) (vecto \(\overrightarrow{BM}; \overrightarrow{CM}\) là 2 vecto đối nhau nên tổng bằng vecto $0$)

Đáp án B

AH
Akai Haruma
Giáo viên
29 tháng 11 2018

Câu 2:

\(\overrightarrow{u}=\overrightarrow{AB}+\overrightarrow{DC}+\overrightarrow{BD}+\overrightarrow{CA}\)

\(=(\overrightarrow{AB}+\overrightarrow{BD})+(\overrightarrow{DC}+\overrightarrow{CA})=\overrightarrow{AD}+\overrightarrow{DA}\)

\(=\overrightarrow{0}\) (tổng của 2 vecto đối nhau)

Đáp án C

Câu 3:

Bạn nhớ rằng \(\overrightarrow{a}; k\overrightarrow{a}(k\in\mathbb{R})\) luôn là 2 vecto cùng phương (tính chất vecto). Nhưng nó mới chỉ là cùng phương thôi. Muốn cùng phương +cùng hướng thì \(k>0\) ; muốn cùng phương + ngược hướng thì \(k< 0\). Nói chung là phụ thuộc vào tính chất của $k$

Câu C thì hiển nhiên sai.

Nên đáp án B đúng

30 tháng 11 2022

\(\overrightarrow{AB}=\overrightarrow{AG}+\overrightarrow{GB}=\overrightarrow{b}-\overrightarrow{a}\)

\(\overrightarrow{GC}=0-\overrightarrow{GA}-\overrightarrow{GB}=-\overrightarrow{a}-\overrightarrow{b}\)

\(\overrightarrow{BC}=\overrightarrow{BG}+\overrightarrow{GC}=-\overrightarrow{b}-\overrightarrow{a}-\overrightarrow{b}=-\overrightarrow{a}-2\overrightarrow{b}\)

\(\overrightarrow{CA}=\overrightarrow{CG}+\overrightarrow{GA}=\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{a}=2\overrightarrow{a}+\overrightarrow{b}\)

18 tháng 11 2022

Bài 2:

Gọi M là trung điểm của AB,N là trung điểm của CD

vecto GA+vecto GB+vecto GC+vecto GD=vecto 0

=>2 vetco GM+2 vecto GN=vecto 0

=>vecto GM+vecto GN=vecto 0

=>G là trung điểm của MN

22 tháng 8 2019

Kéo dài AG lấy E sao cho AG=GE

\(2\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GB}=\overrightarrow{GE}+\overrightarrow{GB}=\overrightarrow{AG}+\overrightarrow{GB}=\overrightarrow{AB}\)

\(\overrightarrow{GI}=\overrightarrow{IA}\Rightarrow6\overrightarrow{GI}=3\overrightarrow{GA}\)

\(\overrightarrow{AB}+\overrightarrow{AC}+3\overrightarrow{GA}=\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GA}=\overrightarrow{GE}+\overrightarrow{GA}=\overrightarrow{AG}+\overrightarrow{GA}=\overrightarrow{0}\)

23 tháng 7 2019

Bài 1 và Bài 2 tương tự nhau nên mk sẽ chỉ CM bài 1 thôi nha

\(\overrightarrow{AB}=\overrightarrow{DC}\Rightarrow\overrightarrow{AB}+\overrightarrow{CD}=0\)

\(\Rightarrow\overrightarrow{AD}+\overrightarrow{DB}+\overrightarrow{CB}+\overrightarrow{BD}=0\)

\(\Leftrightarrow\overrightarrow{AD}+\overrightarrow{CB}=0\Leftrightarrow\overrightarrow{AD}=\overrightarrow{BC}\)

Bài 3:

Xét \(\Delta AIP\) theo quy tắc trung điểm có:

\(\overrightarrow{IC}=\frac{\overrightarrow{IA}+\overrightarrow{IP}}{2}\)

Làm tương tự vs các tam giác còn lại

\(\Rightarrow\overrightarrow{IB}=\frac{\overrightarrow{IN}+\overrightarrow{IC}}{2}\)

\(\Rightarrow\overrightarrow{IA}=\frac{\overrightarrow{IB}+\overrightarrow{IM}}{2}\)

Cộng vế vs vế

\(\Rightarrow\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}=\frac{\overrightarrow{IA}+\overrightarrow{IP}+\overrightarrow{IN}+\overrightarrow{IC}+\overrightarrow{IB}+\overrightarrow{IM}}{2}\)

\(\Leftrightarrow2\overrightarrow{IA}+2\overrightarrow{IB}+2\overrightarrow{IC}=\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{IM}+\overrightarrow{IN}+\overrightarrow{IP}\)

\(\Leftrightarrow\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}=\overrightarrow{IM}+\overrightarrow{IN}+\overrightarrow{IP}\left(đpcm\right)\)