Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giả sử bất đẳng thức đã cho đúng khi đó\(\frac{a^2+b^2}{2}\ge\frac{\left(a+b\right)^2}{2^2}\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b^{ }\right)^2\Leftrightarrow2\left(a^2+b^2\right)\ge a^2+2ab+b^2\)
\(\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\)
Vì bất đẳng thức cuối luôn đúng với mọi a, b nên bất đảng thức đầu đúng => đpcm
Câu 1:
Ta có phương trình: \(x^2-4x+6=\frac{21}{x^2-4x+10}\)
<=> \(\left(x^2-4x+6\right)\left(x^2-4x+10\right)=21\)
<=> \(\left(x^2-4x+8\right)^2-4=21\)
<=> \(\left(x^2-4x+8\right)^2=25\)
<=> \(x^2-4x+8=\pm5\)
<=> \(\orbr{\begin{cases}x^2-4x+3=0\\x^2-4x+13=0\end{cases}}\)
2 phương trình này bạn bấm máy tính là ra nghiệm nha :) Mình làm hơi tắt :0
Câu 3:
Ta sẽ sử dụng bất đẳng thức Bu-nhi-a-cốp-xki dạng phân thức: Với a, b, x, y thuộc R thì \(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\)
Dấu "=" xảy ra <=> \(\frac{a}{x}=\frac{b}{y}\)
Áp dụng bất đẳng thức Bu-nhi-a-cốp-xki dạng phân thức ta có:
\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{b+c+c+a+a+b}=\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)
=> \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{a+b+c}{2}\)=> đpcm
Câu 4:
Do x > 0 nên ta có: \(x+\frac{1}{x}-2=\left(\sqrt{x}\right)^2-2+\left(\frac{1}{\sqrt{x}}\right)^2=\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^2\ge0\forall x>0\)
=> \(x+\frac{1}{x}-2\ge0\Rightarrow x+\frac{1}{x}\ge2\)
=> đpcm
Ta có \(\left(\frac{1}{2}x+y\right)\left(...\right)=\frac{x^3+8y^3}{8}\)
\(\Leftrightarrow8\left(\frac{1}{2}x+y\right)\left(...\right)=x^3-8y^3\)
\(\Leftrightarrow4\left(x+2y\right)\left(...\right)=\left(x+2y\right)\left(x^2-2xy+4y^2\right)\)
\(\Rightarrow4\left(...\right)=x^2-2xy+4y^2\)
\(\Rightarrow\left(...\right)=\frac{x^2-2xy+4y^2}{4}\)
Vậy đccm
#Học tốt
Ta có VP = \(\frac{x^3+8y^3}{8}\)
VP=\(\frac{x^3}{8}+y^3\)=\(\left(\frac{x}{2}\right)^3+y^3\)=\(\left(\frac{x}{2}+y\right)\).\(\left(\frac{x^2}{4}-\frac{xy}{2}+y^2\right)\)
Vậy \(\left(\frac{x^2}{4}-\frac{xy}{2}+y^2\right)\)
Chứng minh bất đẳng thức sau:\(\frac{x}{y}\) + \(\frac{y}{x}\)lớn hơn hoặc bằng 2( với x,y cùng dấu)
Vì x, y cùng dấu nên \(\hept{\begin{cases}\frac{x}{y}>0\\\frac{y}{x}>0\end{cases}}\)
Ta có:
\(\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{y}-2+\frac{y}{x}\right)+2=\left(\sqrt{\frac{x}{y}}-\sqrt{\frac{y}{x}}\right)^2+2\ge2\)
Dấu = xảy ra khi x = y # 0
Giả sử \(a\ge b\ge c>0\)thì \(a+b\ge a+c\ge b+c\)
Ta có : \(\frac{c}{a+b}\le\frac{c}{b+c}\) ; \(\frac{b}{a+c}\le\frac{b}{b+c}\)và \(\frac{a}{b+c}=\frac{a}{b+c}\)
(mấy cái này có được chẳng qua là dựa vào tính chất của phân số: 2 phân số có cùng tử số ,thì phân số nào có mẫu bé hơn thì lớn hơn và ngược lại
Cộng từng vế ta được :
\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\le\frac{c}{b+c}+\frac{b}{b+c}+\frac{a}{b+c}\)
\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\le\frac{a}{b+c}+1< 1+1=2\)
\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}< 2\left(dpcm\right)\)
nếu thấy Đ thì cho mk nka !!!
\(a^2+\left(\frac{b}{2}\right)^2\ge2.a.\frac{b}{2}=ab\)
xét a^2-ab+b^2/4>=0
(a-b/2)^2>=0(đúng)
suy ra đpcm