\(\frac{b^2}{4}\)\(\ge\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2017

\(a^2+\left(\frac{b}{2}\right)^2\ge2.a.\frac{b}{2}=ab\)

9 tháng 4 2017

xét a^2-ab+b^2/4>=0

(a-b/2)^2>=0(đúng)

suy ra đpcm 

23 tháng 4 2019

giả sử bất đẳng thức đã cho đúng khi đó\(\frac{a^2+b^2}{2}\ge\frac{\left(a+b\right)^2}{2^2}\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b^{ }\right)^2\Leftrightarrow2\left(a^2+b^2\right)\ge a^2+2ab+b^2\)

\(\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\)

Vì bất đẳng thức cuối luôn đúng với mọi a, b nên bất đảng thức đầu đúng => đpcm

3 tháng 4 2018

Câu 1:

Ta có phương trình: \(x^2-4x+6=\frac{21}{x^2-4x+10}\)

<=> \(\left(x^2-4x+6\right)\left(x^2-4x+10\right)=21\)

<=> \(\left(x^2-4x+8\right)^2-4=21\)

<=> \(\left(x^2-4x+8\right)^2=25\)

<=> \(x^2-4x+8=\pm5\)

<=> \(\orbr{\begin{cases}x^2-4x+3=0\\x^2-4x+13=0\end{cases}}\)

2 phương trình này bạn bấm máy tính là ra nghiệm nha :) Mình làm hơi tắt :0

Câu 3:

Ta sẽ sử dụng bất đẳng thức Bu-nhi-a-cốp-xki dạng phân thức: Với a, b, x, y thuộc R thì \(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\)

Dấu "=" xảy ra <=> \(\frac{a}{x}=\frac{b}{y}\)

Áp dụng bất đẳng thức Bu-nhi-a-cốp-xki dạng phân thức ta có:

\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{b+c+c+a+a+b}=\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)

=> \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{a+b+c}{2}\)=> đpcm

Câu 4:

Do x > 0 nên ta có: \(x+\frac{1}{x}-2=\left(\sqrt{x}\right)^2-2+\left(\frac{1}{\sqrt{x}}\right)^2=\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^2\ge0\forall x>0\)

=> \(x+\frac{1}{x}-2\ge0\Rightarrow x+\frac{1}{x}\ge2\)

=> đpcm

4 tháng 4 2018

  cảm ơn bạn rất nhiều

26 tháng 2 2020

Ta có \(\left(\frac{1}{2}x+y\right)\left(...\right)=\frac{x^3+8y^3}{8}\)

\(\Leftrightarrow8\left(\frac{1}{2}x+y\right)\left(...\right)=x^3-8y^3\)

\(\Leftrightarrow4\left(x+2y\right)\left(...\right)=\left(x+2y\right)\left(x^2-2xy+4y^2\right)\)

\(\Rightarrow4\left(...\right)=x^2-2xy+4y^2\)

\(\Rightarrow\left(...\right)=\frac{x^2-2xy+4y^2}{4}\)

Vậy đccm

#Học tốt

26 tháng 2 2020

Ta có VP = \(\frac{x^3+8y^3}{8}\)

VP=\(\frac{x^3}{8}+y^3\)=\(\left(\frac{x}{2}\right)^3+y^3\)=\(\left(\frac{x}{2}+y\right)\).\(\left(\frac{x^2}{4}-\frac{xy}{2}+y^2\right)\)

Vậy \(\left(\frac{x^2}{4}-\frac{xy}{2}+y^2\right)\)

8 tháng 2 2017

Vì x, y cùng dấu nên \(\hept{\begin{cases}\frac{x}{y}>0\\\frac{y}{x}>0\end{cases}}\)

Ta có:

\(\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{y}-2+\frac{y}{x}\right)+2=\left(\sqrt{\frac{x}{y}}-\sqrt{\frac{y}{x}}\right)^2+2\ge2\)

Dấu = xảy ra khi x = y # 0

8 tháng 2 2017

\(\frac{x}{y}+\frac{y}{x}\ge2\Leftrightarrow\frac{x}{y}+\frac{y}{x}-2\ge0\Leftrightarrow\frac{x^2+y^2-2xy}{xy}\ge0\Leftrightarrow\frac{\left(x-y\right)^2}{xy}\ge0\) luôn đúng!

4 tháng 5 2017

Giả sử  \(a\ge b\ge c>0\)thì    \(a+b\ge a+c\ge b+c\)

Ta có : \(\frac{c}{a+b}\le\frac{c}{b+c}\)  ;   \(\frac{b}{a+c}\le\frac{b}{b+c}\)và    \(\frac{a}{b+c}=\frac{a}{b+c}\)

(mấy cái này có được chẳng qua là dựa vào tính chất của phân số: 2 phân số có cùng tử số  ,thì phân số nào có mẫu bé hơn thì lớn hơn và ngược lại 

Cộng từng vế ta được : 

      \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\le\frac{c}{b+c}+\frac{b}{b+c}+\frac{a}{b+c}\)

 \(\Leftrightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\le\frac{a}{b+c}+1< 1+1=2\)

\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}< 2\left(dpcm\right)\)

 nếu thấy Đ thì cho mk nka !!!