Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\left(a+b-c\right)^2\ge0\)
\(\Leftrightarrow a^2+b^2+c^2\ge2ac+2bc-2ab\)
Mà \(a^2+b^2+c^2=\frac{5}{3}< 2\)
\(\Rightarrow2ac+2bc-2ab< 2\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< \frac{1}{abc}\)
A = \(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)
= \(a.\frac{a}{b+c}+b.\frac{b}{a+c}+c.\frac{c}{a+b}\)
=\(a.\frac{a}{b+c}+1-1+b.\frac{b}{a+c}+1-1+c.\frac{c}{a+b}+1-1\)
= \(\frac{a\left(a+b+c\right)}{b+c}-a+\frac{b\left(a+b+c\right)}{a+b}-b+\frac{c\left(a+b+c\right)}{a+b}-c\)
= \(\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)-\left(a+b+c\right)\)
= (a+b+c) - (a+b+c) = 0
Câu 1:
Ta có phương trình: \(x^2-4x+6=\frac{21}{x^2-4x+10}\)
<=> \(\left(x^2-4x+6\right)\left(x^2-4x+10\right)=21\)
<=> \(\left(x^2-4x+8\right)^2-4=21\)
<=> \(\left(x^2-4x+8\right)^2=25\)
<=> \(x^2-4x+8=\pm5\)
<=> \(\orbr{\begin{cases}x^2-4x+3=0\\x^2-4x+13=0\end{cases}}\)
2 phương trình này bạn bấm máy tính là ra nghiệm nha :) Mình làm hơi tắt :0
Câu 3:
Ta sẽ sử dụng bất đẳng thức Bu-nhi-a-cốp-xki dạng phân thức: Với a, b, x, y thuộc R thì \(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\)
Dấu "=" xảy ra <=> \(\frac{a}{x}=\frac{b}{y}\)
Áp dụng bất đẳng thức Bu-nhi-a-cốp-xki dạng phân thức ta có:
\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{b+c+c+a+a+b}=\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)
=> \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{a+b+c}{2}\)=> đpcm
Câu 4:
Do x > 0 nên ta có: \(x+\frac{1}{x}-2=\left(\sqrt{x}\right)^2-2+\left(\frac{1}{\sqrt{x}}\right)^2=\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^2\ge0\forall x>0\)
=> \(x+\frac{1}{x}-2\ge0\Rightarrow x+\frac{1}{x}\ge2\)
=> đpcm
Xét \(\frac{2a+bc}{a+c}=\frac{a\left(a+b+c\right)+bc}{a+c}=\frac{a^2+ab+ac+bc}{a+c}=\frac{\left(a+b\right)\left(a+c\right)}{a+c}=a+b\)(thay 2=a+b+c)
Tương tự \(\frac{2b+ac}{a+b}=b+c\)và \(\frac{2c+ab}{c+b}=c+a\)
\(\Rightarrow M=\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\)
\(M=2.\left(a+b+c\right)\)
\(M=4\)
Giả sử \(a\ge b\ge c>0\)thì \(a+b\ge a+c\ge b+c\)
Ta có : \(\frac{c}{a+b}\le\frac{c}{b+c}\) ; \(\frac{b}{a+c}\le\frac{b}{b+c}\)và \(\frac{a}{b+c}=\frac{a}{b+c}\)
(mấy cái này có được chẳng qua là dựa vào tính chất của phân số: 2 phân số có cùng tử số ,thì phân số nào có mẫu bé hơn thì lớn hơn và ngược lại
Cộng từng vế ta được :
\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\le\frac{c}{b+c}+\frac{b}{b+c}+\frac{a}{b+c}\)
\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\le\frac{a}{b+c}+1< 1+1=2\)
\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}< 2\left(dpcm\right)\)
nếu thấy Đ thì cho mk nka !!!