Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tam giác ABC đều => Kẻ AH vuông góc với BC thì H là trung điểm của BC => BH = BC/2 = a/2
Tính được AH theo định lý Pytago: AH = a3√2a32
=> Diện tích của tam giác ABC là: 12.a3√2.a=a23√412.a32.a=a234
b) Xét các cặp tam giác bằng nhau dựa trên tam giác ABC đều vào tỉ số đề bài cho (CGC) em sẽ => Tam giác DEF có 3 cạnh bằng nhau => tam giác đều
c) Tam giác DEF và tam giác ABC đồng dạng
=> SDEF/SABC = (DE/AB)2
Bài này hình như trong sách nào mà t quên ròi, ai nhớ nhắc với
A B C O H F D E M K T A B C D E A B C I G D M Hình 1 Hình 2 Hình 3
Câu 1: (Hinh 1)
a) Gọi AO giao BC tại T. Áp dụng ĐL Thales, hệ quả ĐL Thales ta có các tỉ số:
\(\frac{AK}{AB}=\frac{CM}{BC};\frac{CF}{CA}=\frac{OM}{CA}=\frac{TO}{TA}=\frac{TE}{TB}=\frac{TM}{TC}=\frac{TE+TM}{TB+TC}=\frac{ME}{BC}\)
Suy ra \(\frac{AK}{AB}+\frac{BE}{BC}+\frac{CF}{CA}=\frac{CM+BE+ME}{BC}=1\)(đpcm).
b) Dễ có \(\frac{DE}{AB}=\frac{CE}{CB};\frac{FH}{BC}=\frac{BE+CM}{BC};\frac{MK}{CA}=\frac{BM}{BC}\). Từ đây suy ra:
\(\frac{DE}{AB}+\frac{FH}{BC}+\frac{MK}{CA}=\frac{CE+BM+BE+CM}{BC}=\frac{2\left(BE+ME+CM\right)}{BC}=2\)(đpcm).
Câu 2: (Hình 2)
Qua C kẻ đường thẳng song song với AD cắt tia BA tại E. Khi đó dễ thấy \(\Delta\)CAE cân tại A.
Áp dụng hệ quả ĐL Thales có: \(\frac{AD}{CE}=\frac{BA}{BE}\) hay \(\frac{AD}{CE}=\frac{c}{b+c}\Rightarrow AD=\frac{c.CE}{b+c}\)
Vì \(CE< AE+AC=2b\)(BĐT tam giác) nên \(AD< \frac{2bc}{b+c}\)(đpcm).
Câu 3: (Hình 3)
Gọi M và D thứ tự là trung điểm cạnh BC và chân đường phân giác ứng với đỉnh A của \(\Delta\)ABC.
Do G là trọng tâm \(\Delta\)ABC nên \(\frac{AG}{GM}=2\). Áp dụng ĐL đường phân giác trong tam giác ta có:
\(\frac{IA}{ID}=\frac{BA}{BD}=\frac{CA}{CD}=\frac{BA+CA}{BD+CD}=\frac{AB+AC}{BC}=\frac{2BC}{BC}=2\)
Suy ra \(\frac{IA}{ID}=\frac{GA}{GM}\left(=2\right)\). Áp dụng ĐL Thales đảo vào \(\Delta\)AMD ta được IG // BC (đpcm).
Bài 1:
Gọi chiều dài là x,gọi chiều rộng là y
Vì chiều rộng kém chiều dài 20cm ta có: x-20=y hay x-y=20 (1)
Vì chu vi hình chữ nhật là 72, ta có: (x+y).2=72 => x+y=36 (2)
Từ (1)(2) ta có:\(\begin{cases}x-y=20\\x+y=36\end{cases}\) \(\Leftrightarrow\begin{cases}x=20+y\\20+y+y=36\end{cases}\)
\(\Leftrightarrow\begin{cases}x=20+y\\2y=16\end{cases}\) \(\Leftrightarrow\begin{cases}x=20+y\\y=8\end{cases}\) \(\Leftrightarrow\begin{cases}x=28\\y=8\end{cases}\)
Diện tịhs hình chữ nhật là: x.y=28.8=224
Bài 2
Xét ΔHAB và ΔACB có:
\(\widehat{AHB}=\widehat{BAC}=90\)
\(\widehat{B}\) : góc chung
=>ΔHAB~ΔACB(g.g)
b) Xét ΔABC vuông tại A(gt)
=>\(BC^2=AB^2+AC^2\) (theo định lý pytago)
=>\(BC^2=12^2+16^2=400\)
=>BC=20cm
Vì ΔHAB~ΔACB(cmt)
=>\(\frac{AH}{AC}=\frac{AB}{BC}\)
=>\(AH=\frac{AB\cdot AC}{BC}=\frac{12\cdot16}{20}=9,6cm\)
Vì DE la dg pg cua goc ADB (gt)
=.>AD/DB= AE/EB (h chat dg pg trong tam giac) (1)
Vi DF la dg pg cua goc ADC (gt)
=>FC/FA=ĐC/ĐÁ ( tính chất đg pg trong tam giác) (2)
tu (1) va (2) suy ra:EA/EB.FC/FA.DB.DC=AD/DB.DB/DC.DC/DA=1 (dpcm)
Vì DE la dg pg cua goc ADB (gt)
=.>AD/DB= AE/EB (h chat dg pg trong tam giac) (1)
Vi DF la dg pg cua goc ADC (gt)
=>FC/FA=ĐC/ĐÁ ( tính chất đg pg trong tam giác) (2)
tu (1) va (2) suy ra:EA/EB.FC/FA.DB.DC=AD/DB.DB/DC.DC/DA=1 (dpcm)