K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2020

do AD//CM nên \(\frac{AD}{CM}=\frac{BA}{BM}=\frac{c}{b+c}\)

mà \(CM< AM+AC=2b=>\frac{c}{bc}>\frac{AD}{2b}=>\frac{1}{l_a}>\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)\left(1\right)\)

tương tự ta có 

\(\hept{\begin{cases}\frac{1}{l_b}>\frac{1}{2}\left(\frac{1}{c}+\frac{1}{a}\right)\left(2\right)\\\frac{1}{l_c}>\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)\left(3\right)\end{cases}}\)

cộng (1) (2) (3) zế zới zế ta được đpcm

13 tháng 3 2017

A B C E D a b c c (AD là phân giác trong góc A)

Qua B kẽ đường thẳng // AD và cắt AC tại E

\(\Rightarrow\hept{\begin{cases}\widehat{CAD}=\widehat{CEB}\\\widehat{DAB}=\widehat{ABE}\end{cases}}\)

\(\Rightarrow\widehat{CEB}=\widehat{ABE}\)

\(\Rightarrow\Delta ABE\)cân tại A

Xét \(\Delta ABE\) có \(BE< AB+AE=2AB=2c\)

Xét \(\Delta CBE\) có AD // BE 

\(\Rightarrow\frac{BE}{AD}=\frac{CE}{AC}\)

\(\Rightarrow BE=\frac{CE.AD}{AC}=\frac{l_a\left(b+c\right)}{b}< 2c\)

\(\Rightarrow\frac{1}{l_a}>\frac{b+c}{2bc}=\frac{1}{2b}+\frac{1}{2c}\left(1\right)\)

Chứng minh tương tự ta có:

\(\hept{\begin{cases}\frac{1}{l_b}>\frac{1}{2a}+\frac{1}{2c}\left(2\right)\\\frac{1}{l_c}>\frac{1}{2a}+\frac{1}{2b}\left(3\right)\end{cases}}\)

Cộng (1), (2), (3) vế theo vế ta được

\(\frac{1}{l_a}+\frac{1}{l_b}+\frac{1}{l_c}>\frac{1}{2b}+\frac{1}{2c}+\frac{1}{2a}+\frac{1}{2c}+\frac{1}{2a}+\frac{1}{2b}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Vậy \(\frac{1}{l_a}+\frac{1}{l_b}+\frac{1}{l_c}>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

13 tháng 3 2017

Bài khó quá !!

10 tháng 3 2017

Xét tam giác ABC có AB = c ; AC =a ; BC = a ; AD = x ; BE = y ; CF = z ( AD ; BE ; CF là các đường phân giác).
Kẻ đường thẳng qua C song song với AD cắt AB tại M
=> BAD^ = M^ (đồng vị)
DAC^ = ACM^ (so le trong)
Mà BAD^ = DAC^ ( AD là phân giác)
=> M^ = ACM^
=> tam giác ACM cân tại A
=> AM = AC
Xét tam giác AMC có MC < AC + AM (bất đẳng thức trong tam giác AMC)
=> MC < 2AC
Xét tam giác BMC có: AD // MC
=> tam giác BAD đồng dạng tam giác BMC (hệ quả Ta - lét)
=> AD/MC = AB/MB = AB/ (AB+AM)
=> AD = (MC. AB) / (AB+AC) < ( AB . 2AC)/(AB+AC)
=> 1/AD > (AB+AC)/(AB. 2AC)
=> 1/AD > 1/2AC + 1/2AB
=> 1/AD > 1/2.(1/AC + 1/AB)
=> 1/x > 1/2. ( 1/a + 1/c ) (1)
Chứng minh tương tự: 1/y > 1/2. (1/b + 1/c) (2)
1/z > 1/2.(1/a + 1/b) (3)
Cộng (1) (2) và (3) theo từng vế: ta có:
1/x + 1/y + 1/z > 1/2 .(1/a + 1/c + 1/b + 1/c + 1/a + 1/b )
=>1/x + 1/y + 1/z > 1/a + 1/b + 1/c

10 tháng 3 2017

cảm ơn ạ

21 tháng 7 2020

a) Chứng minh được BĐT \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)(*)

Dấu "=" xảy ra <=> a=b

Áp dụng BĐT (*) vào bài toán ta có:

\(\hept{\begin{cases}\frac{1}{2x+y+z}=\frac{1}{x+y+x+y}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\\\frac{1}{x+2y+z}=\frac{1}{x+y+y+z}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}\right)\\\frac{1}{x+y+2z}=\frac{1}{x+y+z+z}\le\frac{1}{4}\left(\frac{1}{x+z}+\frac{1}{y+z}\right)\end{cases}}\)

\(\Rightarrow\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le\frac{1}{4}\cdot2\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\)

Tiếp tục áp dụng BĐT (*) ta có:

\(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right);\frac{1}{y+z}\le\frac{1}{4}\left(\frac{1}{y}+\frac{1}{z}\right);\frac{1}{z+x}\le\frac{1}{4}\left(\frac{1}{z}+\frac{1}{x}\right)\)

\(\Rightarrow\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le\frac{1}{4}\cdot2\cdot\frac{1}{4}\cdot2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=1\)

\(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le1\)

Dấu "=" xảy ra <=> \(x=y=z=\frac{3}{4}\)

21 tháng 7 2020

b) áp dụng bđt \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)ta có:

\(\hept{\begin{cases}\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\\\frac{1}{b+c-a}+\frac{1}{a+c-b}\ge\frac{4}{b+c-a+a+c-b}=\frac{4}{2c}=\frac{2}{c}\\\frac{1}{a+b-c}+\frac{1}{a+c-b}\ge\frac{4}{a+b-c+a+c-b}=\frac{4}{2a}=\frac{2}{a}\end{cases}}\)

Cộng theo vế 3 BĐT ta có:

\(2VT\ge\frac{2}{a}+\frac{2}{b}+\frac{2}{c}=2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=2VP\)

\(\Rightarrow VT\ge VP\)

Đẳng thức xảy ra <=> a=b=c