Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
do AD//CM nên \(\frac{AD}{CM}=\frac{BA}{BM}=\frac{c}{b+c}\)
mà \(CM< AM+AC=2b=>\frac{c}{bc}>\frac{AD}{2b}=>\frac{1}{l_a}>\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)\left(1\right)\)
tương tự ta có
\(\hept{\begin{cases}\frac{1}{l_b}>\frac{1}{2}\left(\frac{1}{c}+\frac{1}{a}\right)\left(2\right)\\\frac{1}{l_c}>\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)\left(3\right)\end{cases}}\)
cộng (1) (2) (3) zế zới zế ta được đpcm
Bài này hình như trong sách nào mà t quên ròi, ai nhớ nhắc với
A B C E D a b c c (AD là phân giác trong góc A)
Qua B kẽ đường thẳng // AD và cắt AC tại E
\(\Rightarrow\hept{\begin{cases}\widehat{CAD}=\widehat{CEB}\\\widehat{DAB}=\widehat{ABE}\end{cases}}\)
\(\Rightarrow\widehat{CEB}=\widehat{ABE}\)
\(\Rightarrow\Delta ABE\)cân tại A
Xét \(\Delta ABE\) có \(BE< AB+AE=2AB=2c\)
Xét \(\Delta CBE\) có AD // BE
\(\Rightarrow\frac{BE}{AD}=\frac{CE}{AC}\)
\(\Rightarrow BE=\frac{CE.AD}{AC}=\frac{l_a\left(b+c\right)}{b}< 2c\)
\(\Rightarrow\frac{1}{l_a}>\frac{b+c}{2bc}=\frac{1}{2b}+\frac{1}{2c}\left(1\right)\)
Chứng minh tương tự ta có:
\(\hept{\begin{cases}\frac{1}{l_b}>\frac{1}{2a}+\frac{1}{2c}\left(2\right)\\\frac{1}{l_c}>\frac{1}{2a}+\frac{1}{2b}\left(3\right)\end{cases}}\)
Cộng (1), (2), (3) vế theo vế ta được
\(\frac{1}{l_a}+\frac{1}{l_b}+\frac{1}{l_c}>\frac{1}{2b}+\frac{1}{2c}+\frac{1}{2a}+\frac{1}{2c}+\frac{1}{2a}+\frac{1}{2b}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Vậy \(\frac{1}{l_a}+\frac{1}{l_b}+\frac{1}{l_c}>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Xét tam giác ABC có AB = c ; AC =a ; BC = a ; AD = x ; BE = y ; CF = z ( AD ; BE ; CF là các đường phân giác).
Kẻ đường thẳng qua C song song với AD cắt AB tại M
=> BAD^ = M^ (đồng vị)
DAC^ = ACM^ (so le trong)
Mà BAD^ = DAC^ ( AD là phân giác)
=> M^ = ACM^
=> tam giác ACM cân tại A
=> AM = AC
Xét tam giác AMC có MC < AC + AM (bất đẳng thức trong tam giác AMC)
=> MC < 2AC
Xét tam giác BMC có: AD // MC
=> tam giác BAD đồng dạng tam giác BMC (hệ quả Ta - lét)
=> AD/MC = AB/MB = AB/ (AB+AM)
=> AD = (MC. AB) / (AB+AC) < ( AB . 2AC)/(AB+AC)
=> 1/AD > (AB+AC)/(AB. 2AC)
=> 1/AD > 1/2AC + 1/2AB
=> 1/AD > 1/2.(1/AC + 1/AB)
=> 1/x > 1/2. ( 1/a + 1/c ) (1)
Chứng minh tương tự: 1/y > 1/2. (1/b + 1/c) (2)
1/z > 1/2.(1/a + 1/b) (3)
Cộng (1) (2) và (3) theo từng vế: ta có:
1/x + 1/y + 1/z > 1/2 .(1/a + 1/c + 1/b + 1/c + 1/a + 1/b )
=>1/x + 1/y + 1/z > 1/a + 1/b + 1/c
a) Gọi AD là tia phân giác của \(\widehat{BAC}\left(D\in BC\right)\)
Qua B vẽ đường thẳng song song với AD cắt AC tại M
Ta có: \(\widehat{ABM}=\widehat{BAD};\widehat{AMB}=\widehat{DAC}\)
Mà \(\widehat{BAD}=\widehat{DAC}\)(vì AD là phân giác \(\widehat{BAC}\))
=> \(\widehat{AMB}=\widehat{ABM}\) nên \(\Delta\)ABM cân tại A)
Từ đó có AM=AB=c. \(\Delta\)ABM có: MB<AM+AB=2c
\(\Delta\)ADC có: MB//AD, nên \(\frac{AD}{AB}=\frac{AC}{MC}\) (hệ quả định lý Ta-let)
do đó \(AD=\frac{AC}{MC}\cdot MB< \frac{AC}{AC+AM}\cdot2bc=\frac{2bc}{b+c}\)
b) Cmtt câu a) ta có: \(\hept{\begin{cases}y< \frac{2ca}{c+a}\\z< \frac{2ab}{a+b}\end{cases}}\)
Do đó: \(\hept{\begin{cases}\frac{1}{x}>\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)\\\frac{1}{y}>\frac{1}{2}\left(\frac{1}{a}+\frac{1}{c}\right)\\\frac{1}{z}>\frac{1}{2}\left(\frac{1}{b}+\frac{1}{a}\right)\end{cases}\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}\)
Bài 1:
Gọi chiều dài là x,gọi chiều rộng là y
Vì chiều rộng kém chiều dài 20cm ta có: x-20=y hay x-y=20 (1)
Vì chu vi hình chữ nhật là 72, ta có: (x+y).2=72 => x+y=36 (2)
Từ (1)(2) ta có:\(\begin{cases}x-y=20\\x+y=36\end{cases}\) \(\Leftrightarrow\begin{cases}x=20+y\\20+y+y=36\end{cases}\)
\(\Leftrightarrow\begin{cases}x=20+y\\2y=16\end{cases}\) \(\Leftrightarrow\begin{cases}x=20+y\\y=8\end{cases}\) \(\Leftrightarrow\begin{cases}x=28\\y=8\end{cases}\)
Diện tịhs hình chữ nhật là: x.y=28.8=224
Bài 2
Xét ΔHAB và ΔACB có:
\(\widehat{AHB}=\widehat{BAC}=90\)
\(\widehat{B}\) : góc chung
=>ΔHAB~ΔACB(g.g)
b) Xét ΔABC vuông tại A(gt)
=>\(BC^2=AB^2+AC^2\) (theo định lý pytago)
=>\(BC^2=12^2+16^2=400\)
=>BC=20cm
Vì ΔHAB~ΔACB(cmt)
=>\(\frac{AH}{AC}=\frac{AB}{BC}\)
=>\(AH=\frac{AB\cdot AC}{BC}=\frac{12\cdot16}{20}=9,6cm\)