Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này hình như trong sách nào mà t quên ròi, ai nhớ nhắc với
do AD//CM nên \(\frac{AD}{CM}=\frac{BA}{BM}=\frac{c}{b+c}\)
mà \(CM< AM+AC=2b=>\frac{c}{bc}>\frac{AD}{2b}=>\frac{1}{l_a}>\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)\left(1\right)\)
tương tự ta có
\(\hept{\begin{cases}\frac{1}{l_b}>\frac{1}{2}\left(\frac{1}{c}+\frac{1}{a}\right)\left(2\right)\\\frac{1}{l_c}>\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)\left(3\right)\end{cases}}\)
cộng (1) (2) (3) zế zới zế ta được đpcm
Xét tam giác ABC có AB = c ; AC =a ; BC = a ; AD = x ; BE = y ; CF = z ( AD ; BE ; CF là các đường phân giác).
Kẻ đường thẳng qua C song song với AD cắt AB tại M
=> BAD^ = M^ (đồng vị)
DAC^ = ACM^ (so le trong)
Mà BAD^ = DAC^ ( AD là phân giác)
=> M^ = ACM^
=> tam giác ACM cân tại A
=> AM = AC
Xét tam giác AMC có MC < AC + AM (bất đẳng thức trong tam giác AMC)
=> MC < 2AC
Xét tam giác BMC có: AD // MC
=> tam giác BAD đồng dạng tam giác BMC (hệ quả Ta - lét)
=> AD/MC = AB/MB = AB/ (AB+AM)
=> AD = (MC. AB) / (AB+AC) < ( AB . 2AC)/(AB+AC)
=> 1/AD > (AB+AC)/(AB. 2AC)
=> 1/AD > 1/2AC + 1/2AB
=> 1/AD > 1/2.(1/AC + 1/AB)
=> 1/x > 1/2. ( 1/a + 1/c ) (1)
Chứng minh tương tự: 1/y > 1/2. (1/b + 1/c) (2)
1/z > 1/2.(1/a + 1/b) (3)
Cộng (1) (2) và (3) theo từng vế: ta có:
1/x + 1/y + 1/z > 1/2 .(1/a + 1/c + 1/b + 1/c + 1/a + 1/b )
=>1/x + 1/y + 1/z > 1/a + 1/b + 1/c
hình bạn tự vẽ nhé
a) Ta có : \(\frac{HI}{AI}=\frac{S_{HIC}}{S_{AIC}}=\frac{S_{HIB}}{S_{AIB}}=\frac{S_{HIC}+S_{HIB}}{S_{AIC}+S_{AIB}}=\frac{S_{BHC}}{S_{ABC}}\)
Tương tự : \(\frac{HK}{BK}=\frac{S_{AHC}}{S_{ABC}}\); \(\frac{HS}{CS}=\frac{S_{AHB}}{S_{ABC}}\)
\(\Rightarrow\frac{HI}{AI}+\frac{HK}{BK}+\frac{HS}{CS}=\frac{S_{AHC}+S_{BHC}+S_{AHB}}{S_{ABC}}=1\)
b) tương tự câu a : \(\frac{HA_1}{AI}=\frac{2HI}{AI}=\frac{2S_{BHC}}{S_{ABC}}\).....
Hay :))
A B C C1 B1 A1 D E F H1 G1 G2 H3
\(\Delta ABC\) có \(C_1\) là trung điểm của \(AB\) và \(B_1\) là trung điểm của \(AC\) nên \(B_1C_1\) là đường trung bình của \(\Delta ABC\)
\(\Rightarrow\)\(B_1C_1=\frac{1}{2}BC=A_1B=A_1C\)
Và \(B_1C_1//BC\)\(\Rightarrow\)\(\widehat{AC_1B_1}=\widehat{C_1BA_1}\) ( hai góc đồng vị )
Xét \(\Delta AB_1C_1\) và \(\Delta A_1BC_1\) có :
\(AC_1=BC_1\) \(\left(GT\right)\)
\(\widehat{AC_1B_1}=\widehat{C_1BA_1}\) ( chứng minh trên )
\(B_1C_1=A_1B\) ( chứng minh trên )
Do đó : \(\Delta AB_1C_1=\Delta A_1BC_1\) \(\left(c-g-c\right)\)
Chứng minh tương tự với các \(\Delta AB_1C_1\) và \(\Delta A_1B_1C\)\(;\)\(\Delta A_1BC_1\) và \(\Delta A_1B_1C\)\(;\)\(\Delta A_1BC_1\) và \(\Delta A_1B_1C_1\) ta có :
\(\Delta AB_1C_1=\Delta A_1BC_1=\Delta A_1B_1C=\Delta A_1B_1C_1\)
Mà \(S_{AB_1C_1}+S_{A_1BC_1}+S_{A_1B_1C}+S_{A_1B_1C_1}=S_{ABC}\)
\(\Rightarrow\)\(S_{AB_1C_1}+S_{A_1B_1C_1}=\frac{1}{2}S_{ABC}\)
Bài toán trở thành Chứng minh \(S_{A_1EC_1DB_1F}=S_{AB_1C_1}+S_{A_1B_1C_1}\)
Do 4 tam giác bằng nhau nên các tam giác tạo từ các đường cao của chúng tương ứng bằng nhau
\(\Rightarrow\)\(\Delta C_1EA_1=\Delta ADB_1\)\(;\)\(\Delta B_1FA_1=\Delta ADC_1\)
Mà \(S_{A_1EC_1DB_1F}=S_{C_1EA_1}+S_{B_1FA_1}+S_{C_1DB_1}+S_{A_1B_1C_1}\)
\(\Leftrightarrow\)\(S_{A_1EC_1DB_1F}=\left(S_{ADB_1}+S_{ADC_1}+S_{C_1DB_1}\right)+S_{A_1B_1C_1}=S_{AB_1C_1}+S_{A_1B_1C_1}\) ( điều phải chứng minh )
...
A B C A B C 1 1 1 D E F H
Gọi H là trực tâm của \(\Delta\)A1B1C1.
Ta thấy: \(\Delta\)ABC có A1, B1, C1 là trung điểm các cạnh BC, CA, AB
Cho nên: \(S_{A_1B_1C_1}=S_{AB_1C_1}=S_{BA_1C_1}=S_{CA_1B_1}=\frac{S_{ABC}}{4}\). Ta đi chứng minh \(S_{A_1EC_1DB_1F}=2S_{A_1B_1C_1}\)
Xét \(\Delta\)A1B1C1: H là trực tâm => A1H vuông góc B1C1. Mà B1C1 // BC => A1H vuông góc BC
Nhưng: C1E cũng vuông góc BC nên A1H // C1E. Tương tự: C1H // A1E
Do đó: Tứ giác A1HC1E là hình bình hành => \(S_{A_1HC_1}=S_{A_1EC_1}=\frac{S_{A_1HC_1E}}{2}\)
Tương tự, ta có: \(S_{A_1HB_1}=S_{A_1FB_1}=\frac{S_{A_1HB_1F}}{2};S_{B_1HC_1}=S_{B_1DC_1}=\frac{S_{B_1HC_1D}}{2}\)
\(\Rightarrow S_{A_1HC_1}+S_{A_1HB_1}+S_{B_1HC_1}=\frac{S_{A_1EC_1DB_1F}}{2}\Rightarrow S_{A_1EC_1DB_1F}=2.S_{A_1B_1C_1}=2.\frac{S_{ABC}}{4}=\frac{S_{ABC}}{2}\) (đpcm).
(P/S: Các bn có thể tham khảo thêm cách này)
Bạn đã biết làm bài đó chưa vậy .... nếu rồi thì gửi cho mình được không
A B C E D a b c c (AD là phân giác trong góc A)
Qua B kẽ đường thẳng // AD và cắt AC tại E
\(\Rightarrow\hept{\begin{cases}\widehat{CAD}=\widehat{CEB}\\\widehat{DAB}=\widehat{ABE}\end{cases}}\)
\(\Rightarrow\widehat{CEB}=\widehat{ABE}\)
\(\Rightarrow\Delta ABE\)cân tại A
Xét \(\Delta ABE\) có \(BE< AB+AE=2AB=2c\)
Xét \(\Delta CBE\) có AD // BE
\(\Rightarrow\frac{BE}{AD}=\frac{CE}{AC}\)
\(\Rightarrow BE=\frac{CE.AD}{AC}=\frac{l_a\left(b+c\right)}{b}< 2c\)
\(\Rightarrow\frac{1}{l_a}>\frac{b+c}{2bc}=\frac{1}{2b}+\frac{1}{2c}\left(1\right)\)
Chứng minh tương tự ta có:
\(\hept{\begin{cases}\frac{1}{l_b}>\frac{1}{2a}+\frac{1}{2c}\left(2\right)\\\frac{1}{l_c}>\frac{1}{2a}+\frac{1}{2b}\left(3\right)\end{cases}}\)
Cộng (1), (2), (3) vế theo vế ta được
\(\frac{1}{l_a}+\frac{1}{l_b}+\frac{1}{l_c}>\frac{1}{2b}+\frac{1}{2c}+\frac{1}{2a}+\frac{1}{2c}+\frac{1}{2a}+\frac{1}{2b}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Vậy \(\frac{1}{l_a}+\frac{1}{l_b}+\frac{1}{l_c}>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Bài khó quá !!