K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2022

Xét tứ giác AEDB có: \(\widehat{AEB} = \widehat{ADB} = 90^o \)

⇒ Tứ giác AEDB nội tiếp (2 đỉnh E và D kề nhau cùng nhìn AB dưới 1 cặp góc bằng nhau)

⇒ \(\widehat{EAD} = \widehat{EBD} \) (cùng chắn \(\stackrel\frown{\text{ED}}\))

Xét ΔADC và ΔHDB có:

\(\widehat{ADC} = \widehat{HDB} = 90^o\)

\(\widehat{CAD} = \widehat{HBD} \)   (cmt)

⇒ ΔADC ∼ ΔBDH (g-g)

giúp mik vs

 

8 tháng 5 2020

A B C H D

Ta có: AH vuông BC => ^AHB = 90 độ 

Xét trong đường tròn tâm O

^ACB chắn cung AD  và AD là đường kính => ^ACB = 90 độ 

Xét \(\Delta\)AHB và \(\Delta\)ACD có: ^AHB = ^ACB ( = 90 độ ) ; ^ABH = ^ADC ( cùng chắn cung AC ) 

=> \(\Delta\)AHB ~ \(\Delta\)ACD (g-g)

a: Xét ΔAIK vuông tại K và ΔBIH vuông tạiH có

góc AIK=góc BIH

=>ΔAIK đồng dạng với ΔBIH

b: Xét ΔAHC vuông tại H và ΔBKC vuông tại K có

góc C chung

=>ΔAHC đồng dạng với ΔBKC

c: Xét (O) có

ΔACD nội tiếp

AD là đường kính

=>ΔACD vuông tại C

=>CD vuông góc AC

=>CD//BI

d: Xét (O) có

ΔABD nội tiếp

AD là đường kính

=>ΔABD vuông tạiB

=>BD//CI

Xét tứ giác BICD có

BI//CD

BD//CI

=>BICD là hình bình hành

e: ΔOBC cân tại O

mà OM là đường cao

nên M là trung điểm của BC

=>M là trung điểm của ID

Xét ΔDAI có

M,O lần lượt là trung điểm của DI.DA

nên MO là đường trung bình

=>MO=1/2AI

18 tháng 5 2020

sai rồi bạn ơi

23 tháng 7 2016

Bạn tự vẽ hình nha

a) Xét \(\Delta\)ABC có:BI,CK là hai đường cao 

Mà BI cắt CK tại H(gt)

=> H là trực tâm \(\Delta\)ABC

=>AH cũng là đường cao thứ 3 của \(\Delta\)ABC

      Xét \(\Delta\)ABI và \(\Delta\)ACK có:

              ^AIB=^AKC =90(gt)

                ^A: góc chung

=> \(\Delta\)ABI ~\(\Delta\)ACK(g.g)

b) xét \(\Delta\)ADC và \(\Delta\)AID có:

           ^ADC=^AID=90(gt)

            ^A:góc chung

=> \(\Delta\)ADC~\(\Delta\)AID(g.g)

=>\(\frac{AD}{AI}=\frac{AC}{AD}\)

=> AD^2 =AC*AI

 

24 tháng 7 2016

Câu d,c bk lm hok bạn

 

28 tháng 4 2020

d)
Trên BF lấy điểm G sao cho GK //AB
=>KG⊥⊥CE (1) và BGBF=AKAFBGBF=AKAF (2)
theo câu c), DH là phân giác trong ˆKDFKDF^ (3)
=>HKHF=DKDFHKHF=DKDF (4)
có DA⊥⊥DH (5)
từ (3, 5) =>DA là phân giác ngoài ˆKDFKDF^
=>AKAF=DKDFAKAF=DKDF (6)
từ (2, 4, 6) =>BGBF=HKHFBGBF=HKHF (7)
trên tia đối tia BC lấy điểm J sao cho BJ =BG
=>BJBF=BGBFBJBF=BGBF (8)
từ (7, 8) =>BJBF=HKHFBJBF=HKHF
=>JK // BH
=>JK⊥⊥AC (8)
từ (1, 8) =>ˆJKG=ˆACHJKG^=ACH^ (9)
và có JF⊥⊥AH và (1)=>ˆKGJ=ˆCHAKGJ^=CHA^ (10)
từ (9, 10) =>△KGJ∼△CHA△KGJ∼△CHA (g, g)
=>KGCH=GJHA=2.GB2.HI=GBHIKGCH=GJHA=2.GB2.HI=GBHI (11)
từ (10, 11) =>△KGB∼△CHI△KGB∼△CHI (c, g, c)
=>ˆKBF=ˆCIFKBF^=CIF^
=>△FBK∼△FIC△FBK∼△FIC (đpcm)
và ˆICB+ˆFBKICB^+FBK^
=ˆBKF+ˆFBK=90∘=BKF^+FBK^=90∘
=>BK⊥CIBK⊥CI =>K là trực tâm của tam giác IBC (đpcm)

Hình gửi kèm

  • CM tam giác FBK đồng dạng tam giác FIC, suy ra K là trực tâm tam giác BIC.png


 

  •  
15 tháng 6 2019

vẽ đường tròn ngoại tiếp ngũ giác đều ABCDE

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Suy ra tam giác DEI cân tại D ⇒ DI = DE

Mà DE =AE

Nên DI = AE (7)

Từ (4) và (7) suy ra:  D I 2 = AI.AD