K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAIK vuông tại K và ΔBIH vuông tạiH có

góc AIK=góc BIH

=>ΔAIK đồng dạng với ΔBIH

b: Xét ΔAHC vuông tại H và ΔBKC vuông tại K có

góc C chung

=>ΔAHC đồng dạng với ΔBKC

c: Xét (O) có

ΔACD nội tiếp

AD là đường kính

=>ΔACD vuông tại C

=>CD vuông góc AC

=>CD//BI

d: Xét (O) có

ΔABD nội tiếp

AD là đường kính

=>ΔABD vuông tạiB

=>BD//CI

Xét tứ giác BICD có

BI//CD

BD//CI

=>BICD là hình bình hành

e: ΔOBC cân tại O

mà OM là đường cao

nên M là trung điểm của BC

=>M là trung điểm của ID

Xét ΔDAI có

M,O lần lượt là trung điểm của DI.DA

nên MO là đường trung bình

=>MO=1/2AI

a: Sửa đề: CGFB

loading...

loading...

loading...

a: Sửa đề: BFEC

góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

b: góc ABK=1/2*sđ cung AK=90 độ

góc BAK=góc BAD+góc DAK

góc DAC=góc DAK+góc CAK

mà góc BAD=góc CAK

nên góc BAK=góc DAC

Xét ΔABK vuông tại B và ΔADC vuông tại D có

góc BAK=góc DAC

=>ΔABK đồng dạng với ΔADC

a: Xét tứ giác CGFB có \(\widehat{CGB}=\widehat{CFB}=90^0\)

nên CGFB là tứ giác nội tiếp

b: Xét (O) có

ΔACD nội tiếp

AD là đường kính

Do đó: ΔACD vuông tại C

=>AC\(\perp\)CD

Xét (O) có

ΔABD nội tiếp

AD là đường kính

Do đó: ΔABD vuông tại B

=>AB\(\perp\)BD

Xét (O) có

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

\(\widehat{ADC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{ABC}=\widehat{ADC}\)

Xét ΔACD vuông tại C và ΔCFB vuông tại F có

\(\widehat{ADC}=\widehat{CBF}\)

Do đó: ΔACD~ΔCFB

c: ta có: BH\(\perp\)AC

CD\(\perp\)AC

Do đó: BH//CD

Ta có: CH\(\perp\)AB

BD\(\perp\)BA

Do đó: CH//BD

Ta có: ΔOBC cân tại O

mà OI là đường cao

nên I là trung điểm của BC

Xét tứ giác BHCD có

BH//CD

BD//CH

Do đó: BHCD là hình bình hành

d: ta có: BHCD là hình bình hành

=>BC cắt HD tại trung điểm của mỗi đường

mà I là trung điểm của BC

nên I là trung điểm của HD

=>H,I,D thẳng hàng

a: Xét (O) có

ΔABD nội tiếp

AD là đường kính

Do đó: ΔABD vuông tại B

=>BD vuông góc AB

=>BD//CH

Xét (O) có

ΔACD nội tiếp

AD là đường kính

Do đó: ΔACD vuông tại C

=>AC vuông góc CD

=>CD//BH

Xét tứ giác BHCD có

BH//CD

BD//CH

Do đó: BHCD là hình bình hành

b: BHCD là hình bình hành

=>BC cắt HD tại trung điểm của mỗi đường

=>I là trung điểm của HD

Xét ΔHDA có

I,O lần lượt là trung điểm của DH,DA

=>IO là đường trung bình

=>IO//AH và IO=AH/2

=>AH=2IO

5 tháng 9 2023

Vẽ hình giúp em với ạ, em cảm ơn nhiều

 

 

31 tháng 12 2023

a: Xét tứ giác ADHK có

\(\widehat{ADH}+\widehat{AKH}=90^0+90^0=180^0\)

=>ADHK là tứ giác nội tiếp

Xét tứ giác BDKC có \(\widehat{BDC}=\widehat{BKC}=90^0\)

nên BDKC là tứ giác nội tiếp

b: Xét (O) có

\(\widehat{xAC}\) là góc tạo bởi tiếp tuyến Ax và dây cung AC

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{xAC}=\widehat{ABC}\)

mà \(\widehat{ABC}=\widehat{AKD}\left(=180^0-\widehat{DKC}\right)\)

nên \(\widehat{xAC}=\widehat{AKD}\)

mà hai góc này là hai góc ở vị trí đồng vị

nên Ax//DK

c: Xét ΔABC có

BK,CD là các đường cao

BK cắt CD tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC tại M

Xét tứ giác HKCM có \(\widehat{HKC}+\widehat{HMC}=90^0+90^0=180^0\)

nên HKCM là tứ giác nội tiếp

=>\(\widehat{HKM}=\widehat{HCM}\)

mà \(\widehat{HCM}=\widehat{BAM}\left(=90^0-\widehat{ABM}\right)\)

nên \(\widehat{HKM}=\widehat{BAM}\)

mà \(\widehat{BAM}=\widehat{DKB}\)(ADHK là tứ giác nội tiếp)

nên \(\widehat{DKH}=\widehat{MKH}\)

=>\(\widehat{DKB}=\widehat{MKB}\)

=>KB là phân giác của góc DKM

a: Xét tứ giác ADHK có

ˆADH+ˆAKH=900+900=1800���^+���^=900+900=1800

=>ADHK là tứ giác nội tiếp

Xét tứ giác BDKC có ˆBDC=ˆBKC=900���^=���^=900

nên BDKC là tứ giác nội tiếp

b: Xét (O) có

ˆxAC���^ là góc tạo bởi tiếp tuyến Ax và dây cung AC

ˆABC���^ là góc nội tiếp chắn cung AC

Do đó: ˆxAC=ˆABC���^=���^

mà ˆABC=ˆAKD(=1800−ˆDKC)���^=���^(=1800−���^)

nên ˆxAC=ˆAKD���^=���^

mà hai góc này là hai góc ở vị trí đồng vị

nên Ax//DK

c: Xét ΔABC có

BK,CD là các đường cao

BK cắt CD tại H

Do đó: H là trực tâm của ΔABC

=>AH⊥⊥BC tại M

Xét tứ giác HKCM có ˆHKC+ˆHMC=900+900=1800���^+���^=900+900=1800

nên HKCM là tứ giác nội tiếp

=>ˆHKM=ˆHCM���^=���^

mà ˆHCM=ˆBAM(=900−ˆABM)���^=���^(=900−���^)

nên ˆHKM=ˆBAM���^=���^

mà ˆBAM=ˆDKB���^=���^(ADHK là tứ giác nội tiếp)

nên ˆDKH=ˆMKH���^=���^

=>ˆDKB=ˆMKB���^=���^

=>KB là phân giác của góc DKM

18 tháng 8 2021

A B C I K H D M O N

a, C thuộc đường tròn đk AD (gt) => ^ACD = 90 => AC _|_ CD mà có BH _|_ AC => CD // BH

    B thuộc đường tròn đk AD (gt) => ^ABD = 90 => AB _|_ BD mà có CH _|_ AB => BD // CH

=> BHCD là hình bình hành

b, có BHCD là hình bình hành => M là trung điểm của HD 

Có O là trung điểm của AD do AD là đường kính

=> MO là đường trung bình của tam giác AHD

=> MO = 1/2AH

=> AH = 2MO

c, Gọi AM cắt HO tại N

=> N là trọng tâm của tam giác AHD

=> AN = 2/3AM

mà có AM là đường trung tuyến của tam giác ABC

=> H là trọng tâm của tam giác ABC

ờm câu c cũng không chắc lắm

4: góc BEC=góc BDC=90 độ

=>BEDC nội tiếp

5: Xét ΔHDE và ΔHCB có

góc HDE=góc HCB

góc DHE=góc CHB

=>ΔHDE đồng dạng với ΔHCB

=>DE/CB=HD/HC

=>DE*HC=HD*BC

6 tháng 3 2015

tứ giác AECF có góc AEC=AFC là 2 góc kề nhìn cạnh AC nên nt đg tròn

b) ta có : góc ABK =0,5 sđ cung AK=90 độ

xet tam giac ABK và AFC có

góc ABK=góc AFC=90 độ

goc AKB =góc ACF (GÓC NT CHAN CUNG AB)

=>Tam giác ABK đồng dạng vs tam giác AFC(G.G)

14 tháng 3 2017

Tứ giác AECF có góp AEC=ACF laf2 góc kề nhìn cạnh AC nên nối tiếp đường tròn

B)Ta có:Góc ABK=0,5 sđ cùng AK=90 độ

Xét tam giác ABK