Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Sửa đề: BFEC
góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
b: góc ABK=1/2*sđ cung AK=90 độ
góc BAK=góc BAD+góc DAK
góc DAC=góc DAK+góc CAK
mà góc BAD=góc CAK
nên góc BAK=góc DAC
Xét ΔABK vuông tại B và ΔADC vuông tại D có
góc BAK=góc DAC
=>ΔABK đồng dạng với ΔADC
a: Xét tứ giác CGFB có \(\widehat{CGB}=\widehat{CFB}=90^0\)
nên CGFB là tứ giác nội tiếp
b: Xét (O) có
ΔACD nội tiếp
AD là đường kính
Do đó: ΔACD vuông tại C
=>AC\(\perp\)CD
Xét (O) có
ΔABD nội tiếp
AD là đường kính
Do đó: ΔABD vuông tại B
=>AB\(\perp\)BD
Xét (O) có
\(\widehat{ABC}\) là góc nội tiếp chắn cung AC
\(\widehat{ADC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{ABC}=\widehat{ADC}\)
Xét ΔACD vuông tại C và ΔCFB vuông tại F có
\(\widehat{ADC}=\widehat{CBF}\)
Do đó: ΔACD~ΔCFB
c: ta có: BH\(\perp\)AC
CD\(\perp\)AC
Do đó: BH//CD
Ta có: CH\(\perp\)AB
BD\(\perp\)BA
Do đó: CH//BD
Ta có: ΔOBC cân tại O
mà OI là đường cao
nên I là trung điểm của BC
Xét tứ giác BHCD có
BH//CD
BD//CH
Do đó: BHCD là hình bình hành
d: ta có: BHCD là hình bình hành
=>BC cắt HD tại trung điểm của mỗi đường
mà I là trung điểm của BC
nên I là trung điểm của HD
=>H,I,D thẳng hàng
a: Xét (O) có
ΔABD nội tiếp
AD là đường kính
Do đó: ΔABD vuông tại B
=>BD vuông góc AB
=>BD//CH
Xét (O) có
ΔACD nội tiếp
AD là đường kính
Do đó: ΔACD vuông tại C
=>AC vuông góc CD
=>CD//BH
Xét tứ giác BHCD có
BH//CD
BD//CH
Do đó: BHCD là hình bình hành
b: BHCD là hình bình hành
=>BC cắt HD tại trung điểm của mỗi đường
=>I là trung điểm của HD
Xét ΔHDA có
I,O lần lượt là trung điểm của DH,DA
=>IO là đường trung bình
=>IO//AH và IO=AH/2
=>AH=2IO
a: Xét tứ giác ADHK có
\(\widehat{ADH}+\widehat{AKH}=90^0+90^0=180^0\)
=>ADHK là tứ giác nội tiếp
Xét tứ giác BDKC có \(\widehat{BDC}=\widehat{BKC}=90^0\)
nên BDKC là tứ giác nội tiếp
b: Xét (O) có
\(\widehat{xAC}\) là góc tạo bởi tiếp tuyến Ax và dây cung AC
\(\widehat{ABC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{xAC}=\widehat{ABC}\)
mà \(\widehat{ABC}=\widehat{AKD}\left(=180^0-\widehat{DKC}\right)\)
nên \(\widehat{xAC}=\widehat{AKD}\)
mà hai góc này là hai góc ở vị trí đồng vị
nên Ax//DK
c: Xét ΔABC có
BK,CD là các đường cao
BK cắt CD tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC tại M
Xét tứ giác HKCM có \(\widehat{HKC}+\widehat{HMC}=90^0+90^0=180^0\)
nên HKCM là tứ giác nội tiếp
=>\(\widehat{HKM}=\widehat{HCM}\)
mà \(\widehat{HCM}=\widehat{BAM}\left(=90^0-\widehat{ABM}\right)\)
nên \(\widehat{HKM}=\widehat{BAM}\)
mà \(\widehat{BAM}=\widehat{DKB}\)(ADHK là tứ giác nội tiếp)
nên \(\widehat{DKH}=\widehat{MKH}\)
=>\(\widehat{DKB}=\widehat{MKB}\)
=>KB là phân giác của góc DKM
a: Xét tứ giác ADHK có
ˆADH+ˆAKH=900+900=1800���^+���^=900+900=1800
=>ADHK là tứ giác nội tiếp
Xét tứ giác BDKC có ˆBDC=ˆBKC=900���^=���^=900
nên BDKC là tứ giác nội tiếp
b: Xét (O) có
ˆxAC���^ là góc tạo bởi tiếp tuyến Ax và dây cung AC
ˆABC���^ là góc nội tiếp chắn cung AC
Do đó: ˆxAC=ˆABC���^=���^
mà ˆABC=ˆAKD(=1800−ˆDKC)���^=���^(=1800−���^)
nên ˆxAC=ˆAKD���^=���^
mà hai góc này là hai góc ở vị trí đồng vị
nên Ax//DK
c: Xét ΔABC có
BK,CD là các đường cao
BK cắt CD tại H
Do đó: H là trực tâm của ΔABC
=>AH⊥⊥BC tại M
Xét tứ giác HKCM có ˆHKC+ˆHMC=900+900=1800���^+���^=900+900=1800
nên HKCM là tứ giác nội tiếp
=>ˆHKM=ˆHCM���^=���^
mà ˆHCM=ˆBAM(=900−ˆABM)���^=���^(=900−���^)
nên ˆHKM=ˆBAM���^=���^
mà ˆBAM=ˆDKB���^=���^(ADHK là tứ giác nội tiếp)
nên ˆDKH=ˆMKH���^=���^
=>ˆDKB=ˆMKB���^=���^
=>KB là phân giác của góc DKM
a, C thuộc đường tròn đk AD (gt) => ^ACD = 90 => AC _|_ CD mà có BH _|_ AC => CD // BH
B thuộc đường tròn đk AD (gt) => ^ABD = 90 => AB _|_ BD mà có CH _|_ AB => BD // CH
=> BHCD là hình bình hành
b, có BHCD là hình bình hành => M là trung điểm của HD
Có O là trung điểm của AD do AD là đường kính
=> MO là đường trung bình của tam giác AHD
=> MO = 1/2AH
=> AH = 2MO
c, Gọi AM cắt HO tại N
=> N là trọng tâm của tam giác AHD
=> AN = 2/3AM
mà có AM là đường trung tuyến của tam giác ABC
=> H là trọng tâm của tam giác ABC
ờm câu c cũng không chắc lắm
4: góc BEC=góc BDC=90 độ
=>BEDC nội tiếp
5: Xét ΔHDE và ΔHCB có
góc HDE=góc HCB
góc DHE=góc CHB
=>ΔHDE đồng dạng với ΔHCB
=>DE/CB=HD/HC
=>DE*HC=HD*BC
tứ giác AECF có góc AEC=AFC là 2 góc kề nhìn cạnh AC nên nt đg tròn
b) ta có : góc ABK =0,5 sđ cung AK=90 độ
xet tam giac ABK và AFC có
góc ABK=góc AFC=90 độ
goc AKB =góc ACF (GÓC NT CHAN CUNG AB)
=>Tam giác ABK đồng dạng vs tam giác AFC(G.G)
Tứ giác AECF có góp AEC=ACF laf2 góc kề nhìn cạnh AC nên nối tiếp đường tròn
B)Ta có:Góc ABK=0,5 sđ cùng AK=90 độ
Xét tam giác ABK
a: Xét ΔAIK vuông tại K và ΔBIH vuông tạiH có
góc AIK=góc BIH
=>ΔAIK đồng dạng với ΔBIH
b: Xét ΔAHC vuông tại H và ΔBKC vuông tại K có
góc C chung
=>ΔAHC đồng dạng với ΔBKC
c: Xét (O) có
ΔACD nội tiếp
AD là đường kính
=>ΔACD vuông tại C
=>CD vuông góc AC
=>CD//BI
d: Xét (O) có
ΔABD nội tiếp
AD là đường kính
=>ΔABD vuông tạiB
=>BD//CI
Xét tứ giác BICD có
BI//CD
BD//CI
=>BICD là hình bình hành
e: ΔOBC cân tại O
mà OM là đường cao
nên M là trung điểm của BC
=>M là trung điểm của ID
Xét ΔDAI có
M,O lần lượt là trung điểm của DI.DA
nên MO là đường trung bình
=>MO=1/2AI