K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2015

Đặt A=\(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^n}\)

2A=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{n-1}}\)

2A-A=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{n-1}}-\)\(\left(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^n}\right)\)

A=\(\frac{1}{2}-\frac{1}{2^n}\)

Vì \(\frac{1}{2}-\frac{1}{2^n}\) < \(\frac{1}{2}\)

Mà \(\frac{1}{2}\) < 1

Nên \(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^n}\) < 1

=> đpcm

13 tháng 3 2019

Đặt A=122 +123 +124 +...+12n 

2A=12 +122 +123 +...+12n−1 

2A-A=12 +122 +123 +...+12n−1 −(122 +123 +124 +...+12n )

A=12 −12n 

Vì 12 −12n  < 12 

Mà 12  < 1

Nên 122 +123 +124 +...+12n  < 1

=> đpcm

13 tháng 11 2023

1.A = 21 + 22 + 23 + 24 + ... + 259 + 260

Xét .dãy số: 1; 2; 3; 4; .... 59; 60 Dãy số này có 60 số hạng vậy A có 60 hạng tử.

vì 60 : 2 = 30 nên nhóm hai số hạng liên tiếp của A vào một nhóm thì ta được:

A = (21 + 22) + (23 + 24) +...+ (259 + 260)

A = 2.(1 + 2) + 23.(1 +2) +...+ 259.(1 +2)

A =2.3 + 23.3  + ... + 259.3

A =3.( 2 + 23+...+ 259)

Vì 3 ⋮ 3 nên A = 3.(2 + 23 + ... + 259)⋮3 (đpcm)

 

 

 

13 tháng 11 2023

áp dụng công thức là ra :))))

14 tháng 11 2018

1)A=987

16 tháng 3 2019

Nguyen svtkvtm Khôi Bùi Nguyễn Việt Lâm Lê Anh Duy Nguyễn Thành Trương DƯƠNG PHAN KHÁNH DƯƠNG An Võ (leo) Ribi Nkok Ngok Bonking ...

18 tháng 3 2019

Đặt : \(M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}=\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+...+\frac{1}{n\cdot n}\)

\(M< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{(n-1)\cdot n};M< 1-\frac{1}{n}< 1\)

Bạn có thể tham khảo nhé

4 tháng 8 2016

(1/2^2)+(1/2^3)+...+(1/2^n)<(1/1.2)+(1/2.3)+(1/3.4)+...+(1/(n+1).n)

=1-1/2+1/2-1/3+1/3-1/4+1/4-....+1/n+1-1/n

=1-1/n<1

suy ra biểu thức trên <1

16 tháng 8 2019

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\)\(\frac{1}{3^2}< \frac{1}{2.3}\); .... ; \(\frac{1}{n^2}< \frac{1}{n\left(n-1\right)}\)

\(\Rightarrow B< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(n-1\right)}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n-1}\)

\(\Rightarrow B< 1-\frac{1}{n-1}< 1\)

=> B < 1 (đpcm)

7 tháng 4 2015

Ta có:P=\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)=\(\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{n.n}\)

<\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right).n}\)=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)

=\(\frac{1}{1}-\frac{1}{n}=\frac{n}{n}-\frac{1}{n}=\frac{n-1}{n}\)<1

=>P<1