\(\left(2^1+2^2+2^3+2^4+...+2^{59}+2^{60}\right):3\)

2. Chứng minh...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2023

1.A = 21 + 22 + 23 + 24 + ... + 259 + 260

Xét .dãy số: 1; 2; 3; 4; .... 59; 60 Dãy số này có 60 số hạng vậy A có 60 hạng tử.

vì 60 : 2 = 30 nên nhóm hai số hạng liên tiếp của A vào một nhóm thì ta được:

A = (21 + 22) + (23 + 24) +...+ (259 + 260)

A = 2.(1 + 2) + 23.(1 +2) +...+ 259.(1 +2)

A =2.3 + 23.3  + ... + 259.3

A =3.( 2 + 23+...+ 259)

Vì 3 ⋮ 3 nên A = 3.(2 + 23 + ... + 259)⋮3 (đpcm)

 

 

 

13 tháng 11 2023

áp dụng công thức là ra :))))

4 tháng 12 2017

mk năm nay học lớp 8 mà mới chỉ học công thức thôi chứ chưa học (hoặc đã học mà quên mất) nhưng chứng minh cái này mk mới chỉ học công thức thôi chứ chứng minh bài toán tổng quánthì chịu

16 tháng 3 2019

Nguyen svtkvtm Khôi Bùi Nguyễn Việt Lâm Lê Anh Duy Nguyễn Thành Trương DƯƠNG PHAN KHÁNH DƯƠNG An Võ (leo) Ribi Nkok Ngok Bonking ...

2:

\(B=3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^n\cdot9+3^n-2^n\cdot4-2^n\)

\(=3^n\cdot10-2^n\cdot5\)

\(=3^n\cdot10-2^{n-1}\cdot10⋮10\)

25 tháng 3 2018

\(a)\) Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2010^2}\) ta có : 

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)

\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\)

\(A< 1-\frac{1}{2010}=\frac{2009}{2010}< 1\)

\(\Rightarrow\)\(A< 1\) ( đpcm ) 

Vậy \(A< 1\)

Chúc bạn học tốt ~ 

17 tháng 7 2015

a) A = 12 + 22 + ...+ n2 = 1.(2 - 1) + 2.(3 - 1) + ...+ n.(n+ 1 - 1) = [1.2 + 2.3 + ...+ n.(n+1)] - (1 + 2 + ... + n)

Tính B = 1.2 + 2.3 + ...+ n.(n+1)

=> 3.B = 1.2.3 + 2.3.3 +3.4.3 + ...+ n.(n+1).3

= 1.2.3 + 2.3.(4 -1) + 3.4 .(5 - 2) + ...+ n.(n+1).((n+2) - (n-1) )

= [1.2.3.+ 2.3.4 + 3.4.5 +...+ n.(n+1).(n+2)] - [1.2.3 + 2.3.4 +...+ (n-1).n(n+1)] = n(n+1)(n+2)

=> B = n(n+1).(n+2)/3

Tính 1 + 2 + 3 + ..+ n =(n+1).n / 2

Vậy A =  n(n+1).(n+2)/3 - (n+1).n / 2 = n(n+1).(2n+1) / 6

17 tháng 7 2015

Ta có: \(n^3=n.n.n=n.\left(\frac{n+1+n-1}{2}\right).n\left(\frac{\left(n+1\right)-\left(n-1\right)}{2}\right)\)

\(=\left(\frac{n\left(n+1\right)}{2}+\frac{n\left(n-1\right)}{2}\right).\left(\frac{n\left(n+1\right)}{2}-\frac{n\left(n-1\right)}{2}\right)=\left(\frac{n\left(n+1\right)}{2}\right)^2-\left(\frac{n\left(n-1\right)}{2}\right)^2\)

(Áp dụng công thức a2 - b2 = (a-b).(a+b))

Áp dụng vào ta có: \(1^3=\left(\frac{1.2}{2}\right)^2-\left(\frac{1.0}{2}\right)^2\)

                             \(2^3=\left(\frac{2.3}{2}\right)^2-\left(\frac{2.1}{2}\right)^2\)

                             \(3^3=\left(\frac{3.4}{2}\right)^2-\left(\frac{3.2}{2}\right)^2\)

                            ......................

                            \(n^3=\left(\frac{n\left(n+1\right)}{2}\right)^2-\left(\frac{n\left(n-1\right)}{2}\right)^2\)

Cộng từng vế ta được:

\(1^3+2^3+....+n^3=\left(\frac{n\left(n+1\right)}{2}\right)^2\)

# Mik làm ý A trước nhé, mik sợ dài :

- Với n = 1 \(\Rightarrow1=\frac{1.2.3}{6}\)( đúng )

- Giả sử đẳng thức cũng đúng với\(n=k\)hay :

\(1^2+2^2+3^2+...+k^2=\)\(\frac{k\left(k+1\right)\left(2k+1\right)}{6}\)

Ta cần chứng minh nó cũng đúng với\(n=k+1\)hay :

\(1^2+2^2+3^2+...+k^2+\left(k+1\right)^2=\)\(\frac{\left(k+1\right)\left(k+2\right)\left(k+3\right)}{6}\)

Thật vậy, ta có:

\(1^2+2^2+3^2+...+k^2+\left(k+1\right)^2=\)\(\frac{k\left(k+1\right)\left(2k+1\right)}{6}+\left(k+1\right)^2\)

\(\Rightarrow\left(k+1\right)\left(\frac{k\left(2k+1\right)}{6}+k+1\right)=\)\(\left(k+1\right)\left(\frac{2k^2+k+6k+6}{6}\right)\)

\(\Rightarrow\)\(\left(k+1\right)\left(\frac{2k^2+7k+6}{6}\right)=\)\(\frac{\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{6}\)( đpcm )

# giờ mik làm ý B nha !

- Với n = 1 \(\Rightarrow\)1 = 1 ( đúng )

Giả sử bài toán đúng với\(n=k\left(n\inℕ^∗\right)\)thì ta có :

1 + 23 + 33 + .... + k3 = \(\left[\frac{n\left(n+1\right)}{2}\right]^2\left(1\right)\)

Ta cần chứng minh đề bài đúng với\(n=k+1\)tức là :

13 + 23 + 33 + ...... + n3 = \(\left[\frac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\left(2\right)\)

Đặt \(B=1^3+2^3+...+\left(k+1\right)^3\)

\(=\left(\frac{k\left(k+1\right)}{2}\right)^2+\left(k+1\right)^3\)theo ( 1 )

\(=\left[\frac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\)theo ( 2 )

\(\Rightarrow\left(1\right),\left(2\right)\)đều đúng

Mà \(\left[\frac{n\left(n+1\right)}{2}\right]^2=\)\(\frac{n^2\left(n+1\right)^2}{4}\)

\(\Rightarrow\)\(1^3+2^3+...+n^3=\)\(\frac{n^2\left(n+1\right)^2}{4}\)( đpcm )

 
22 tháng 7 2019

Mik lười quá bạn tham khảo câu 3 tại đây nhé:

Câu hỏi của nguyen linh nhi - Toán lớp 6 - Học toán với OnlineMath

22 tháng 7 2019

\(S=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{37\cdot38\cdot39}\)

\(2S=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{37\cdot38}-\frac{1}{38\cdot39}\)

\(2S=\frac{1}{2}-\frac{1}{38\cdot39}\)

\(S=\frac{1}{4}-\frac{1}{2\cdot38\cdot39}< \frac{1}{4}\)

29 tháng 12 2017

Đặt \(A=1.2+2.3+3.4+...+n\left(n+1\right)\)

\(\Rightarrow3A=1.2.3+2.3.3+3.4.3+...+3n\left(n+1\right)\)

\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+n\left(n+1\right)\left(n+2-n+1\right)\)

\(=1.2.3+2.3.4-1.2.3+...+n\left(n+1\right)\left(n+2\right)-\left(n-1\right)n\left(n+1\right)\)

\(=n\left(n+1\right)\left(n+2\right)\)

\(\Rightarrow1.2+2.3+3.4+...+n\left(n+1\right)=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

29 tháng 12 2017

Bạn ơi tại sao 3n.(n+1) lại bằng với n.(n+1).(n+2-n+1)

25 tháng 7 2017

mình chỉ biết tinh A thôi.

A=2A-A

2A=\(2^2+2^3+2^4+...+2^{61}\)

=>A=\(2^{61}-2\)

6 tháng 6 2020

Thằng ngu

20 tháng 6 2017

Câu 1: ta có:

\(4C=4^2+4^3+...+4^n+4^{n+1}\)lấy 4C-C ta có:\(3C=4^{n+1}-4\)

=> C=\(\frac{4^{n+1}-4}{3}\) 

b, tương tự ta có: \(5D=5+5^2+...+5^{2000}+5^{2001}\)

=> D=\(\frac{5^{2001}-1}{4}\)

Câu 2: ta có: \(2A=2+2^2+2^3+...+2^{200}+2^{201}\)

=> Lấy 2A - A, ta có: \(A=2^{201}-1\)=> A+1=2201 -1+1=2201 .

Vậy \(A+1=2^{201}\)

Câu 3: Ta có: \(3B=3^2+3^3+3^4+...+3^{2005}+3^{2006}\)

=> \(B=\frac{3^{2006}-3}{2}\)=> \(2B+3=3^{2006}-3+3=3^{2006}\)

Vậy 2B + 3 là một lũy thừa của 3...

Câu 4: Do 4=22nên ta có: \(2C=2^3+2^3+2^4+...+2^{2005}+2^{2006}\)

=> \(C=2^{2006}+2^3-\left(2^2+4\right)\)=>\(C=2^{2006}\)

Vậy C là lũy thừa của 2 có số mũ là 2006

Câu 5: a, Do 3n+2 chia hết cho n-1 hay:

3n-3+5 sẽ chia hết cho n-1 =>3(n-1) +5 chia hết cho n-1...mà 3(n-1) chia hết cho n-1 nên 5 chia hết n-1;

=> n-1 thuộc (1,5,-1,-5);;; nên n tương ứng với(2;6;0;-4)

b ,Do n+6 chia hết cho n nên 6 chia hết cho n hay n là ước của 6 

nên => n thuộc (1,6,-1,-6);

c, Do 3n+4 chia hết cho n-1 hay: 3n-3+7 chia hết cho n-1

=> 3(n-1)+7 chia hết cho n-1 => 7 chia hết cho n-1;

n -1 thuộc (1,7,-1,-7) hay n sẽ tương ứng với( 2,8,0,-6);

d, Do n+5 chia hết cho n+1 hay n+1+4 chia hết cho n+1 

=> 4 chia hết cho n+1 => n+1 thuộc (1,4,-1,-4) nên n tương ứng với (0,3,-2,-5);

20 tháng 6 2017

thanks nha