K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2017

vô lí !!!

11 tháng 12 2017

ta có: -20=-20 
=>16-36=25-45 
=>4.4-4.9=5.5-5.9 
=>4.4-2.9/2.4+81/4=5.5-2.9/2.5+81/4 
=>(4-9/2)(4-9/2)=(5-9/2)(5-9/2) (hằng đẳng thức số 2) 
=>4=5 
=>2=3 
=>1+1=3 

17 tháng 9 2016

Ta có:

\(M=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)

\(\Rightarrow3M=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)

\(\Rightarrow3M-M=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)

\(\Rightarrow2M=1-\frac{1}{3^{98}}\)

\(\Rightarrow M=\left(1-\frac{1}{3^{98}}\right):2\)

\(\Rightarrow M=\frac{1}{2}-\frac{1}{3^{98}.2}< \frac{1}{2}\)

\(\Rightarrow M< \frac{1}{2}\left(đpcm\right)\)

17 tháng 9 2016

cảm ơn bạn nha

2 tháng 6 2015

a)ta có 3B=1+1/3+1/3^2+........+1/3^2003+1/3^2004

             B=    1/3+1/3^2+........+1/3^2003+1/3^2004+1/3^2005

suy ra 2B=1-1/3^2005

    suy ra B=\(\frac{1-\frac{1}{3}^{2005}}{2}\)

suy ra B=1/2-1/3^2005/2 bé hơn 1/2

từ đấy suy ra B bé hơn 1/2

13 tháng 10 2019

Đặt \(A=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}.\)

\(\Rightarrow\frac{1}{3}A=\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)

\(\Rightarrow A-\frac{1}{3}A=\left(\frac{1}{3^2}-\frac{1}{3^3}\right)+\left(\frac{1}{3^3}-\frac{1}{3^3}\right)+...+\left(\frac{1}{3}-\frac{1}{3^{100}}\right)\)

\(\Rightarrow\frac{2}{3}A=\frac{1}{3}-\frac{1}{3^{100}}< \frac{1}{3}.\)

\(\Rightarrow A< \frac{1}{3}:\frac{2}{3}\)

\(\Rightarrow A< \frac{1}{2}\left(đpcm\right)\)

Vậy \(A< \frac{1}{2}.\)

Chúc bạn học tốt!

2 tháng 8 2016

CM gì hả bạn?

2 tháng 8 2016

chắc đề là z M=1/3+1/3^2+1/3^3+....+1/3^99. CMR: M<1/2

Ta có:1/(3^n)+1/(3^(n+1))=2/(3^(n+1))(cái này bạn tự quy đồng ra ra nhé!).
Áp dụng ta có:1-1/3=2/3
1/3-1/(3^2)=2/(3^2)
1/(3^2)-1/(3^3)=2/(3^3)
....
1/(3^98)-1/(3^99)=2/(3^99).
Cộng từng vế các phép tính với nhau ta có:1-1/(3^99)=2M.
Mà 1-1/(3^99)<1 nên 2M<1 nên M<1/2(điều phải chứng minh)

13 tháng 11 2017

1.

\(\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...+\dfrac{99}{100!}\)

\(=\dfrac{2-1}{2!}+\dfrac{3-1}{3!}+\dfrac{4-1}{4!}+...+\dfrac{100-1}{100!}\)

\(=\dfrac{1}{1!}-\dfrac{1}{2!}+\dfrac{1}{2!}-\dfrac{1}{3!}+\dfrac{1}{3!}-\dfrac{1}{4!}+...+\)\(\dfrac{1}{99!}-\dfrac{1}{100!}\)

\(=1-\dfrac{1}{100!}< 1\)

13 tháng 11 2017

2.

\(\dfrac{1.2-1}{2!}+\dfrac{2.3-1}{3!}+\dfrac{3.4-1}{4!}+...+\)\(\dfrac{1}{100!}\)

Ta có:

\(=\dfrac{1.2}{2!}-\dfrac{1}{2!}+\dfrac{2.3}{3!}-\dfrac{1}{3!}+\dfrac{3.4}{4!}-\dfrac{1}{4!}+...+\)\(\dfrac{99.100}{100!}-\dfrac{1}{100}\)

\(=\left(\dfrac{1.2}{2!}+\dfrac{2.3}{3!}+\dfrac{3.4}{4!}+...+\dfrac{99.100}{100!}\right)\)\(-\left(\dfrac{1}{2!}+\dfrac{1}{3!}+...+\dfrac{1}{100!}\right)\)

\(=\left(1+1+\dfrac{1}{2!}+...+\dfrac{1}{98!}\right)\)\(-\left(\dfrac{1}{2!}+\dfrac{1}{3!}+...+\dfrac{1}{100!}\right)\)

\(=2-\dfrac{1}{99!}-\dfrac{1}{100!}< 2\)

31 tháng 5 2016

Đặt A = 1/3 + 1/3^2 + 1/3^3 + ... + 1/3^2011 + 1/3^2012

3A = 1 + 1/3 + 1/3^2 + ... + 1/3^2010 + 1/3^2011

3A - A = ( 1 + 1/3 + 1/3^2 + ... + 1/3^2010 + 1/3^2011) - ( 1/3 + 1/3^2 + 1/3^3 + ... + 1/3^2011 + 1/3^2012)

31 tháng 5 2016

A= 1/3+1/3^2+1/3^3+...+1/3^2011+1/3^2012 

1/3.A= 1/3^2+1/3^3+1/3^4+...+1/3^2012+1/3^2013

=> 1/3.A-A=-2/3.A = (1/3^2+1/3^3+1/3^4+...+1/3^2012+1/3^2013) - ( 1/3+1/3^2+1/3^3+...+1/3^2011+1/3^2012 )

=> -2/3.A= 1/3^2013 +1/3

=> A= (1/3^2013+1/3) : -2/3

Ta được A < 1/2 

:D