K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2016

Ta có:

\(M=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)

\(\Rightarrow3M=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)

\(\Rightarrow3M-M=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)

\(\Rightarrow2M=1-\frac{1}{3^{98}}\)

\(\Rightarrow M=\left(1-\frac{1}{3^{98}}\right):2\)

\(\Rightarrow M=\frac{1}{2}-\frac{1}{3^{98}.2}< \frac{1}{2}\)

\(\Rightarrow M< \frac{1}{2}\left(đpcm\right)\)

17 tháng 9 2016

cảm ơn bạn nha

22 tháng 6 2023

\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)

\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)

\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)

\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)

\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)

\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)

\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)

28 tháng 10 2016

a) Ta có:

\(0,\left(37\right)=\frac{37}{99}\) ; \(0,\left(62\right)=\frac{62}{99}\)

=> \(0,\left(37\right)+0,\left(62\right)=\frac{37}{99}+\frac{62}{99}=\frac{99}{99}=1\)

b) Ta có:

\(0,\left(33\right)=\frac{33}{99}\)

=> \(0,\left(33\right).3=\frac{33}{99}.3=\frac{1}{3}.3=1\)

28 tháng 10 2016

ta có 0,(37) + 0,(62)= 0,(99)

mà theo quy luận thì ta có thể viết 0,(99) ~ 1 (dpcm)

ta có 0,(33).3=0,(99)

mà theo quy luật ta có thể viết 0,(99)~1(dpcm)

11 tháng 3 2022

Đây Là Lớp Mấy

13 tháng 7 2016

\(16^{10}+32=160000000000+32.\)

                    \(=160000000032\)

Vì 160000000032 chia hết cho 3 nên 1610 + 32 chia hết cho 3.

mình nhé.Mình cảm ơn nhiều,Bài này đúng 100%

9 tháng 2 2018

Theo giả thiết suy ra E là trung điểm của NC, D là trung điểm của MB

Do đó NE=EC; BD=DM

Xét tam giác AEN  và tam giác BEC có:

\(\Delta AEN=\Delta BEC\left(c.g.c\right)\hept{\begin{cases}AE=BE\\EN=EC\\\widehat{AEN}=\widehat{BEC}\left(2gócđốiđỉnh\right)\end{cases}}\)

=> \(\hept{\begin{cases}AN=BC\\\widehat{EAN}=\widehat{EBC}\Rightarrow AN\left|\right|BC\end{cases}\left(1\right)}\)

Tương tự ta có: tam giác ADM= tam giác CAB (c.g.c)

=>\(\hept{\begin{cases}AM=CB\\\widehat{DAM}=\widehat{DCB}\Rightarrow AM\left|\right|BC\end{cases}\left(2\right)}\)

Từ (1) và (2) ta có: AN+AM=2BC và A,N,M thẳng hàng

Do đó: AM+AN=MN  <=> MN=2BC hay BC=1/2(đpcm)

13 tháng 2 2018

thank you 

5 tháng 8 2023

\(m\left(2m-3\right)-2m\left(m+1\right)\)

\(=2m^2-3m-2m^2-2m=-5m⋮5\Rightarrow dpcm\)

5 tháng 8 2023

\(m\left(2m-3\right)-2m\left(m+1\right)\)

\(=2m^2-3m-2m^2-2m\)

\(=-5m⋮5\) \(\forall m\in Z\)

Vậy \(m\left(2m-3\right)-2m\left(m+1\right)⋮m\left(\forall m\in Z\right)\)

7 tháng 11 2017

a) 332017+332018=332016.33+332016.332

=332016.(33+332)=332016.1122⋮374

c)Muốn M nhỏ nhất thì \(12\left(x-2\right)^2+3\)đạt GT dương nhỏ nhất=> 12(x-2)2 đạt GT dương nhỏ nhất=> (x-2)2 đạt GT dương nhỏ nhất => (x-2)2=0

Thay vào M ta được M = 1/3.

7 tháng 11 2017

thế còn phần b thì sao bạn