Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt;c=dt\)
Thay vào từng vế ta có
\(\frac{a.b}{c.d}=\frac{bt.b}{dt.d}=\frac{b^2.t}{d^2.t}=\frac{b^2}{d^2}\) (1)
\(\frac{\left(bt+b\right)^2}{\left(dt+d\right)^2}=\frac{b^2\left(t+1\right)^2}{d^2\left(t+1\right)^2}=\frac{b^2}{d^2}\) (2)
Từ (1) và (2) => ĐPCM
a/b=c/d
=> a/c = b/d
Áp dụng tính chất dãy tỉ số bằng nhau có :
a/c = b/d = a+b/c+d
=> (a/c)mũ 2 = (b/d)mũ 2 = a/c.b/d= ( a+b/c+d ) mũ 2
=> a/c.b/d= ( a+b/c+d ) mũ 2
=> a.b/c.d = (a+b)mũ 2 / (c + d ) mũ 2
=> dpcm
Giải:
Trong tam giác tổng độ dài hai cạnh lớn hơn cạnh thứ 3.
Nên: \(b+c>a\)
\(\Leftrightarrow\) \(\hept{\begin{cases}ab+ac>a^2\\bc+ba>b^2\\ac+cb>c^2\end{cases}}\)
Cộng vế theo vế ta có:
\(2\left(ab+bc+ca\right)>a^2+b^2+c^2\) (Đpcm)
Bài giải
Ta có : ( a + b )2 >=0=> a2 + 2ab + b2 >=2ab.(1)
(b+c)2 >=0=> b2 + 2bc + c2 >= 0 => b2 +c2 >=2bc.(2)
(c+a)2>=0=> c2 + 2ca + a2 >=0=> c2+a2 >=2ca.(3)
Cộng (1) ; (2) ; (3) theo vế - ta có : 2(a2+b2+c2)>=2(ab+bc+ca).
=> a2 + b2 + c2 >= ab + bc + ca (*)
Áp dụng bất đẳng thức trong tam giác - ta có:
a+b>c=>ac+bc>c2 . (4)
b+c>a=>ab+ac>a2 . (5)
c+a>b=>bc+ab>b2 . (6)
Cộng (4) ; (5) ; (6) theo vế - ta có :
2(ab+bc+ca)>a2+b2+c2(**)
Từ (*) ; (**) => đpcm.
Câu 1 :
ad=bc => a/b=c/d ( a,b,c,d khác 0 )
=> b/a=d/c
=> 1-b/a=1-d/c
=> a-b/a=c-d/c
=> a/a-b=c/c-d
=> ĐPCM
Câu 2 :
Đk để phân số tồn tại là a,b,c khác 0
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
a/b=b/c=c/a=a+b+c/a+b+c=1
=> a=b;b=c;c=a => a=b=c
Khi đó : a^2+b^2+c^2/(a+b+c)^2 = a^2+a^2+a^2/(a+a+a)^2 = 3a^2/9a^2=1/3
=> ĐPCM
k mk nha
Áp dụng bất đẳng thức tam giác:
\(a+b>c\Rightarrow ac+bc>c^2\)(vì c > 0)
\(b+c>a\Rightarrow ab+ac>a^2\)(vì a > 0)
\(c+a>b\Rightarrow bc+ab>b^2\)(do b > 0)
Do đó: \(2\left(ab+bc+ac\right)>a^2+b^2+c^2\)
\(\)