\(Cho\)\(\frac{a}{b}=\frac{c}{d}\)(a khác c, b khác (cộng trừ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2020

sorry là

CMR \(\frac{a+b}{a-b}=\frac{b+d}{b-d}\)

1 tháng 2 2020

đặt k là ra liền bạn à

15 tháng 8 2016

Đặt\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=k\)

Áp dụng tính chất dãy tỉ số bằng nhau,ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}=k\Rightarrow\left(\frac{a-b}{c-d}\right)^{2013}=k^{2013}\)(1)

Mặt khác:\(\frac{a}{c}=\frac{b}{d}=k\Rightarrow\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}=k^{2013}\)

Áp dụng tính chất dãy tỉ số bằng nhau,ta có:

\(\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}=\frac{a^{2013}+b^{2013}}{c^{2013}+d^{2013}}=k^{2013}\)(2)

Từ (1);(2) ta có: \(\left(\frac{a-b}{c-d}\right)^{2013}=\frac{a^{2013}+b^{2013}}{c^{2013}+d^{2013}}\left(=k^{2013}\right)\)

15 tháng 8 2016

có \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)=>\(\frac{a^{2013}}{c^{2013}}=\frac{\left(a-b\right)^{2013}}{\left(c-d\right)^{2013}}\)

ngược lại cũng có \(\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}=\frac{a^{2013}+b^{2013}}{c^{2013}+d^{2013}}\)

=> đpcm :V 

28 tháng 6 2017

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)

\(a,\Rightarrow\frac{a+b}{b}=\frac{bk+b}{b}=\frac{b\left[k+1\right]}{b}=k+1\)

\(\frac{c+d}{d}=\frac{dk+d}{d}=\frac{d\left[k+1\right]}{d}=k+1\)

\(\Rightarrow\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a+b}{b}=\frac{c+d}{d}\)

\(b,\Rightarrow\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left[k+1\right]}{b\left[k-1\right]}=\frac{k+1}{k-1}\)

\(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left[k+1\right]}{d\left[k-1\right]}=\frac{k+1}{k-1}\)

\(\Rightarrow\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

10 tháng 11 2018

\(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)

\(\frac{b}{b+c+d}>\frac{b}{a+b+c+d}\)

\(\frac{c}{c+d+a}>\frac{c}{a+b+c+d}\)

\(\frac{d}{d+a+b}>\frac{d}{a+b+c+d}\)

\(\Rightarrow\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}>\frac{a+b+c+d}{a+b+c+d}=1\left(1\right)\)

\(\frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\left(vì\frac{a}{a+b+c}< 1\right)\)

tương tự

\(\frac{b}{b+c+d}< \frac{b+a}{a+b+c+d}\)

\(\frac{c}{c+d+a}< \frac{c+b}{a+b+c+d}\)

\(\frac{d}{d+a+b}< \frac{d+c}{a+b+c+d}\)

\(\Rightarrow\)\(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< \frac{2.\left(a+b+c+d\right)}{a+b+c+d}=2\left(2\right)\)

từ (1) và (2) => đpcm

12 tháng 11 2016

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{a+b+c}\) =\(\frac{a+b+c+d}{b+c+d+a+c+d+a+b+d+a+b+c}\)

Vì a+b+c+d khác 0

=> b+c+d=a+c+d=a+b+d=a+b+c

=>a=b=c=d

Khi đó:

a + b = c+d

b+c= (a+d)

c+d=a+b

d+a=b+c

=>\(\frac{a+b}{c+d}=\frac{b+c}{a+d}=\frac{c+d}{a+b}=\frac{d+a}{b+c}=1\)

 

 

 

12 tháng 11 2016

mk có chút nhầm lẫn các đấu = phải là +

19 tháng 10 2017

Đề nghị bạn kiểm tra lại đề mình thấy khi

\(\frac{a}{b}=\frac{1}{2};\frac{b}{c}=\frac{2}{4};\frac{c}{d}=\frac{4}{8}\)

thì thay vào bị sai

15 tháng 11 2016

ta co\(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}=>\frac{a-b}{a}=\frac{c-d}{c}\)

có các bài khác tương tự

29 tháng 8 2016

đụ mẹ bọn online math

29 tháng 8 2016
J vậy bạn
10 tháng 11 2018

\(\frac{a+b}{c+d}=\frac{a-2b}{c-2d}\\ \Leftrightarrow\left(a+b\right)\left(c-2d\right)=\left(c+d\right)\left(a-2b\right)\)

\(\Leftrightarrow ac-2ad+bc-2bd=ac+ad-2bc-2bd\)

\(\Leftrightarrow3bc=3ad\)

\(\Leftrightarrow bc=ad\)

\(\Leftrightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)

10 tháng 11 2018

\(\frac{a+b}{c+d}=\frac{a-2b}{c-2d}\Rightarrow\left(a+b\right)\left(c-2d\right)=\left(c+d\right)\left(a-2b\right)\)

=>ac-2ad+bc-2bd=ca-2bc+da-2bd

=>ac-2ad+bc-2bd-ca+2bc-da+2bd=0

=>-3ad+3bc=0

=>3ad=3bc

=>ad=bc

=>a/b=c/d

29 tháng 8 2016

bacd=dacb vay ...

10 tháng 12 2016

tự làm đi cái này không khó