Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TA CÓ A/B=C/D
=A/C=B/D=A-C/B-D=A+C/B+D
=>TỪ TỈ LỆ THỨC A+B/A-B=C+D/C-D TA CÓ THỂ CÓ TỈ LỆ THỨC LA
AA/B=C/D
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng TC DTSBN ta có :
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\) (đpcm)
ta co\(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}=>\frac{a-b}{a}=\frac{c-d}{c}\)
có các bài khác tương tự
ta có: a/b = c/d
=> a/c = b/d = (a+b)/(c+d) = (a-b)/(c-d)
=> (a+b)/(a-b) = (c+d)/(c-d) ( đpcm)
ta có: a/b = c/d
=> a/c = b/d = (a+b)/(c+d) = (a-b)/(c-d)
=> (a+b)/(a-b) = (c+d)/(c-d) ( đpcm)
#
a/ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}+\frac{b}{b}=\frac{c}{d}+\frac{d}{d}\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}.\)
b/ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}-\frac{b}{b}=\frac{c}{d}-\frac{d}{d}\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}.\)
c/ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{b}{a}+\frac{a}{a}=\frac{d}{c}+\frac{c}{c}\Rightarrow\frac{a+b}{a}=\frac{c+d}{c}.\)
d/ Từ câu c có \(\frac{a+b}{a}=\frac{c+d}{c}\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\)
Nhìn bên phải, bấm vô thống kê hỏi đáp ạ, VÀO TRANG CÁ NHÂN CỦA E Em bức xúc lắm anh chị ạ, xl mấy anh chị vì đã gây rối Thiệt tình là ko chấp nhận nổi con nít ms 2k6 mà đã là vk là ck r ạ, bày đặt yêu xa, chưa lên đại học Đây là \'tội nhân\' https://olm.vn/thanhvien/nhu140826 và https://olm.vn/thanhvien/trungkienhy79
Đặt \(\frac{a}{b}=\frac{c}{d}=k\rightarrow\hept{\begin{cases}a=bk\left(1\right)\\c=dk\left(2\right)\end{cases}}\)
Thay \(\left(1\right),\left(2\right)\)vào từng đẳng thức ta được:
a) Ta có:
\(\frac{a+b}{b}=\frac{bk+b}{b}=\frac{b\left(k+1\right)}{b}=k+1\)
\(\frac{c+d}{d}=\frac{dk+d}{d}=\frac{d\left(k+1\right)}{d}=k+1\)
\(\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\)(cùng bằng \(k+1\))
b) Ta có:
\(\frac{a-b}{a}=\frac{bk-b}{bk}=\frac{b\left(k-1\right)}{bk}=\frac{k-1}{k}\)
\(\frac{c-d}{c}=\frac{dk-d}{dk}=\frac{d\left(k-1\right)}{dk}=\frac{k-1}{k}\)
\(\rightarrow\frac{a-b}{a}=\frac{c-d}{c}\)(cùng bằng\(\frac{k-1}{k}\))
c) Ta có:
\(\frac{a}{a+b}=\frac{bk}{bk+b}=\frac{bk}{b\left(k+1\right)}=\frac{k}{k+1}\)
\(\frac{c}{c+d}=\frac{dk}{dk+d}=\frac{dk}{d\left(k+1\right)}=\frac{k}{k+1}\)
\(\rightarrow\frac{a}{a+b}=\frac{c}{c+d}\)(cùng bằng\(\frac{k}{k+1}\))
d) tương tự như các ý trên ta cũng chứng minh được \(\frac{a}{a-b}=\frac{c}{c-d}\)
a) Ta có : \(\frac{a}{b}=\frac{c}{d}\)
=>\(\frac{a}{b}+1=\frac{c}{d}+1\)
=>\(\frac{a+b}{b}=\frac{c+d}{d}\)
b) Ta có : \(\frac{a}{b}=\frac{c}{d}\)
=> \(\frac{b}{a}=\frac{d}{c}\)
=> \(1-\frac{b}{a}=1-\frac{d}{c}\)
=> \(\frac{a-b}{a}=\frac{c-d}{c}\)
c) Ta có : \(\frac{a}{b}=\frac{c}{d}\)
=>\(\frac{b}{a}=\frac{d}{c}\)
=>\(1+\frac{b}{a}=1+\frac{d}{c}\)
=>\(\frac{a+b}{a}=\frac{c+d}{c}\)
=>\(\frac{a}{a+b}=\frac{c}{c+d}\)
d) Ta có : \(\frac{a}{b}=\frac{c}{d}\)
=>\(\frac{b}{a}=\frac{d}{c}\)
=>\(1-\frac{b}{a}=1-\frac{d}{c}\)
=>\(\frac{a-b}{a}=\frac{c-d}{c}\)
=>\(\frac{a}{a-b}=\frac{c}{c-d}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)
\(a,\Rightarrow\frac{a+b}{b}=\frac{bk+b}{b}=\frac{b\left[k+1\right]}{b}=k+1\)
\(\frac{c+d}{d}=\frac{dk+d}{d}=\frac{d\left[k+1\right]}{d}=k+1\)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a+b}{b}=\frac{c+d}{d}\)
\(b,\Rightarrow\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left[k+1\right]}{b\left[k-1\right]}=\frac{k+1}{k-1}\)
\(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left[k+1\right]}{d\left[k-1\right]}=\frac{k+1}{k-1}\)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)