\(\frac{a}{a+b+c}\)+\(\frac{b}{b+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2018

\(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)

\(\frac{b}{b+c+d}>\frac{b}{a+b+c+d}\)

\(\frac{c}{c+d+a}>\frac{c}{a+b+c+d}\)

\(\frac{d}{d+a+b}>\frac{d}{a+b+c+d}\)

\(\Rightarrow\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}>\frac{a+b+c+d}{a+b+c+d}=1\left(1\right)\)

\(\frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\left(vì\frac{a}{a+b+c}< 1\right)\)

tương tự

\(\frac{b}{b+c+d}< \frac{b+a}{a+b+c+d}\)

\(\frac{c}{c+d+a}< \frac{c+b}{a+b+c+d}\)

\(\frac{d}{d+a+b}< \frac{d+c}{a+b+c+d}\)

\(\Rightarrow\)\(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< \frac{2.\left(a+b+c+d\right)}{a+b+c+d}=2\left(2\right)\)

từ (1) và (2) => đpcm

29 tháng 8 2016

đụ mẹ bọn online math

29 tháng 8 2016
J vậy bạn
21 tháng 6 2017

a) phải là a.d<b.c

 chứ ko phải a,d<b,c đâu

27 tháng 10 2018

Bạn viết đề rõ hơn được không? Mình không hiểu đề lắm

27 tháng 10 2018

\(\frac{a}{b}\)<\(\frac{c}{d}\)và b,d>0 CMR:\(\frac{a}{b}\)<\(\frac{ab+cd}{b^2+d^2}\)<\(\frac{c}{d}\)

14 tháng 8 2016

Cô Loan giúp với ạ!

9 tháng 9 2018

Cái này bạn tích chéo lên là ra chứ có gì đâu ( dựa vào ad<bc)

8 tháng 8 2016

Có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\)

\(\Leftrightarrow ad+ab< bc+ab\)

\(\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\)

\(\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\) (1)

Có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\)

\(\Leftrightarrow ad+cd< bc+cd\)

\(\Leftrightarrow d\left(a+c\right)< c\left(b+d\right)\)

\(\Leftrightarrow\frac{a+c}{b+d}< \frac{c}{d}\) (2)

Từ (1) và (2) suy ra: \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

24 tháng 11 2016

Gọi biểu thức cần so sánh là A

Nếu a< b thì ​​\(\frac{a}{b+m}< \frac{a}{b}< \frac{a+m}{b+m}\)

=> \(\frac{a}{a+b+c+d}< \frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)

\(\frac{b}{a+b+c+d}< \frac{b}{b+c+d}< \frac{b+a}{a+b+c+d}\)

\(\frac{c}{a+b+c+d}< \frac{c}{c+d+a}< \frac{c+b}{a+b+c+d}\)

\(\frac{d}{a+b+c+d}< \frac{d}{d+a+b}< \frac{d+c}{a+b+c+d}\)

=> cộng các vế trái với nhau, vế giữa với nhau, vế phải với nhau, dâu < giữ nguyên, trong đó vế trái cộng lại rút gọn được 1, vế giữa là A, vế phải cộng lại rút gọn được 2, ra điều phải cm