Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
ĐK: \(x,y\ge-2\)
Ta có: \(\sqrt{x+2}-y^3=\sqrt{y+2}-x^3\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+\frac{x-y}{\sqrt{x+2}+\sqrt{y+2}}=0\)
=> x-y=0=>x=y
Thay y=x vào B ta được: B=x2+2x+10\(=\left(x+1\right)^2+9\ge9\forall x\ge-2\)
Dấu '=' xảy ra <=> x+1=0=>x=-1 (tmđk)
Vậy Min B =9 khi x=y=-1
a) \(2\sqrt{3x}-4\sqrt{3x}+27-2\sqrt{3x}=27-4\sqrt{3x}\)
b) \(3\sqrt{2x}-5\sqrt{8x}+7\sqrt{8x}+28=3\sqrt{2x}+2\sqrt{8x}+28=3\sqrt{2x}+4\sqrt{2x}+28=7\sqrt{2x}+28\)
c) \(\frac{2}{x^2-y^2}\sqrt{\frac{3\left(x+y\right)^2}{2}}=\frac{2}{\left(x-y\right)\left(x+y\right)}.\frac{\sqrt{3}\left|x+y\right|}{\sqrt{2}}=\frac{\sqrt{6}}{x-y}\)
d) \(\frac{2}{2a-1}\sqrt{5a^2\left(1-4x+4a^2\right)}=\frac{2}{2a-1}\sqrt{5a^2\left(2a-1\right)^2}=\frac{2}{2a-1}.\sqrt{5}\left|a\left(2a-1\right)\right|=2a\sqrt{5}\)
Thiếu ĐKXĐ : ..............
a) Ta có: \(2\sqrt{3x}-4\sqrt{3x}+27-2\sqrt{3x}\)
\(=27-4\sqrt{3x}\)
b) Ta có: \(3\sqrt{2x}-5\sqrt{8x}+7\sqrt{8x}+28\)
\(=3\sqrt{2x}-5.2\sqrt{2x}+7.2\sqrt{2x}+28\)
\(=3\sqrt{2x}-10\sqrt{2x}+14\sqrt{2x}+28\)
\(=7\sqrt{2x}+28\)
c) Ta có: \(\frac{2}{x^2-y^2}.\sqrt{\frac{3\left(x+y\right)^2}{2}}\)
\(=\sqrt{\frac{4}{\left(x-y\right)^2.\left(x+y\right)^2}.\frac{3\left(x+y\right)^2}{2}}\)
\(=\sqrt{\frac{2.3}{\left(x-y\right)^2}}\)
\(=\frac{1}{x-y}.\sqrt{6}\)
d) Ta có: \(\frac{2}{2a-1}.\sqrt{5a^2.\left(1-4a+4a^2\right)}\)
\(=\sqrt{\frac{4}{\left(2a-1\right)^2}.5a^2.\left(2a-1\right)^2}\)
\(=2a.\sqrt{5}\)
\(x^2-2xy+x-2y\le0\Leftrightarrow x\left(x-2y\right)+\left(x-2y\right)\le0\Leftrightarrow\left(x+1\right)\left(x-2y\right)\le0\)
Vì \(x\ge0\Rightarrow x+1\ge0\Rightarrow x-2y\le0\Rightarrow x\le2y\)
\(A=x^2-5y^2+3x\le\left(2y\right)^2-5y^2+3.2y=-y^2+6y=9-\left(y-3\right)^2\le9\)
=>\(A\le9\)
Dấu "=" xảy ra khi x=6;y=3