Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
min=\(\left\{...................\right\}\)
max=\(\left\{.........................\right\}\)
\(\hept{\begin{cases}x+y\le2\\x^2+y^2+xy=3\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=2-a\\x^2+y^2+xy=3\end{cases}\left(a\ge0\right)}}\)
Do đó: \(\hept{\begin{cases}x+y=2-a\\xy=\left(2-a\right)^2-3\end{cases}}\)
Điều kiện có nghiệm là: \(\Delta=S^2-4P\ge0\)và a>=0 nên 0 =<a =< 4
Ta có: \(T=x^2+y^2+xy-2xy=9-2\left(2-a\right)^2\)
=> \(Min_T=1\)khi x=1 và y=1 hoặc x=-1; y=-1
\(Max_T=9\)khi \(x=\sqrt{3};y=-\sqrt{3}\)hoặc \(x=-\sqrt{3};y=\sqrt{3}\)
Đặt \(a=3x^2+xy+2y^2=>0\le a\le2\)
xét 2 TH
+) Nếu a=0 thì x=y=0 nên P =0
+) nếu \(a\ne0\)thì x hoặc y phải khác 0
xét biểu thức
\(\frac{P}{a}=\frac{x^2+3xy-y^2}{3x^2+xy+2y^2}\)
nếu y=0 thì \(x\ne0=>\frac{P}{a}=\frac{1}{3}< P=\frac{a}{3}\le\frac{2}{3}\)
-xét TH y khác 0 , khi đó đặt \(t=\frac{x}{y}\), ta có
\(\frac{P}{a}=\frac{x^2+3xy-y^2}{3x^2+xy+2y^2}=\frac{t^2+3t-1}{3t^2+t+2}\)
gọi m là một giá trị \(\frac{P}{a}\), khi đó PT sau có nghiệm
\(m=\frac{t^2+3t-1}{3t^2+t+2}\)
\(=>\left(3m-1\right)t^2+\left(m-3\right)t+2m+1=0\left(1\right)\)
nếu \(m=\frac{1}{3}\left(thì\right)t=\frac{5}{8}.Nếu\left(m\ne\frac{1}{3}\right)thì\left(1\right)\)là PT bậc 2 có nghiệm khi zà chỉ khi
\(\left(m-3\right)^2-4\left(3m-1\right)\left(2m+1\right)\ge0\)
\(\Leftrightarrow23m^2+10m-13\le0\Leftrightarrow m\le\frac{13}{23}=>-1\le\frac{P}{a}\le\frac{26}{23}\)
mà a>0 nên \(-2\le-a\le P\le\frac{13}{23}a\le\frac{26}{23}\)
kết hợp những TH zừa xét lại ta có
\(-2\le P\le\frac{26}{23}\)
làm tiếp nè , mình phải làm tách ra không sợ nó lag
\(P=-2\)khi zà chỉ khi
\(\hept{\begin{cases}\frac{x}{y}=\frac{3-m}{2\left(3m-1\right)}=-\frac{1}{2}\\3x^2+xy+2y^2=2\end{cases}\Leftrightarrow\hept{\begin{cases}y=-2x\\3x^2-2x^2+8x^2=2\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}y=-2x\\x=\pm\frac{\sqrt{2}}{3}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\pm\frac{\sqrt{2}}{3}\\y=\mp\frac{2\sqrt{2}}{3}\end{cases}}}\)
zậy MinP=-2 khi ....
+) MaxP nhé
\(P=\frac{26}{13}\)khi
\(\hept{\begin{cases}\frac{x}{y}=\frac{3-m}{2\left(3m-1\right)}=\frac{7}{4}\\3x^2+xy+2y^2=2\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{7}{4}y\\3\left(\frac{7}{4}y\right)+\frac{7}{4}y^2+2y^2=2\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{7}{4}y\\y=\pm\frac{4}{3}\sqrt{\frac{2}{23}}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\pm\frac{7}{3}\sqrt{\frac{2}{23}}\\y=\pm\frac{4}{3}\sqrt{\frac{2}{23}}\end{cases}}}\)
zậy ....
Cho \(x^2+y^2=1\).Tìm min max \(\sqrt{3}xy+y^2\)
Cho \(a^2+b^2\le2\left(a+b\right)\) Tìm min max 2a+b
Bài 1:
ĐK: \(x,y\ge-2\)
Ta có: \(\sqrt{x+2}-y^3=\sqrt{y+2}-x^3\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+\frac{x-y}{\sqrt{x+2}+\sqrt{y+2}}=0\)
=> x-y=0=>x=y
Thay y=x vào B ta được: B=x2+2x+10\(=\left(x+1\right)^2+9\ge9\forall x\ge-2\)
Dấu '=' xảy ra <=> x+1=0=>x=-1 (tmđk)
Vậy Min B =9 khi x=y=-1
Ta có: \(2\left(x^2+y^2\right)=1+xy\)
\(\Leftrightarrow x^2+y^2=\frac{1+xy}{2}\)
\(P=7\left(x^4+y^4\right)+4x^2y^2\)
\(=7x^4+7y^4+4x^2y^2\)
\(\Rightarrow P=28x^3+28y^3+16xy\)
\(\Leftrightarrow P=0\Leftrightarrow28x^3+28y^3+16xy=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\y=4\end{cases}}\)
\(\Rightarrow P_{Min}=15\) và \(Max_P=\frac{12}{33}\)