\(x^2+2xy+2y^2=1\)    .Tìm min, max 

P = \(x^...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2019

pt \(\Leftrightarrow\)\(x^4+2x^2y^2+y^4=2y^2-x^2+3\)

\(\Leftrightarrow\)\(\left(x^2+y^2\right)^2-2\left(x^2+y^2\right)+1=-3x^2+4\)

\(\Leftrightarrow\)\(\left(x^2+y^2-1\right)^2=-3x^2+4\le4\)

\(\Rightarrow\)\(-1\le x^2+y^2\le3\)

29 tháng 1 2020

Ta có: \(2\left(x^2+y^2\right)=1+xy\)

\(\Leftrightarrow x^2+y^2=\frac{1+xy}{2}\)

\(P=7\left(x^4+y^4\right)+4x^2y^2\)

\(=7x^4+7y^4+4x^2y^2\)

\(\Rightarrow P=28x^3+28y^3+16xy\)

\(\Leftrightarrow P=0\Leftrightarrow28x^3+28y^3+16xy=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\\y=4\end{cases}}\)

\(\Rightarrow P_{Min}=15\) và \(Max_P=\frac{12}{33}\)

27 tháng 10 2020

Bài 2: Ta có: x, y, z không âm và \(x+y+z=\frac{3}{2}\)nên \(0\le x\le\frac{3}{2}\Rightarrow2-x>0\)

Áp dụng bất đẳng thức AM - GM dạng \(ab\le\frac{\left(a+b\right)^2}{4}\), ta được: \(x+2xy+4xyz=x+4xy\left(z+\frac{1}{2}\right)\le x+4x.\frac{\left(y+z+\frac{1}{2}\right)^2}{4}=x+x\left(2-x\right)^2\)

Ta cần chứng minh \(x+x\left(2-x\right)^2\le2\Leftrightarrow\left(2-x\right)\left(x-1\right)^2\ge0\)*đúng*

Đẳng thức xảy ra khi \(\left(x,y,z\right)=\left(1,\frac{1}{2},0\right)\)

29 tháng 10 2020

Bài 3: Áp dụng đánh giá quen thuộc \(4ab\le\left(a+b\right)^2\), ta có: \(2\le\left(x+y\right)^3+4xy\le\left(x+y\right)^3+\left(x+y\right)^2\)

Đặt x + y = t thì ta được: \(t^3+t^2-2\ge0\Leftrightarrow\left(t-1\right)\left(t^2+2t+2\right)\ge0\Rightarrow t\ge1\)(dễ thấy \(t^2+2t+2>0\forall t\))

\(\Rightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\ge\frac{1}{2}\)

\(P=3\left(x^4+y^4+x^2y^2\right)-2\left(x^2+y^2\right)+1=3\left[\frac{3}{4}\left(x^2+y^2\right)^2+\frac{1}{4}\left(x^2-y^2\right)^2\right]-2\left(x^2+y^2\right)+1\ge\frac{9}{4}\left(x^2+y^2\right)^2-2\left(x^2+y^2\right)+1\)\(=\frac{9}{4}\left[\left(x^2+y^2\right)^2+\frac{1}{4}\right]-2\left(x^2+y^2\right)+\frac{7}{16}\ge\frac{9}{4}.2\sqrt{\left(x^2+y^2\right)^2.\frac{1}{4}}-2\left(x^2+y^2\right)+\frac{7}{16}=\frac{9}{4}\left(x^2+y^2\right)-2\left(x^2+y^2\right)+\frac{7}{16}=\frac{1}{4}\left(x^2+y^2\right)+\frac{7}{16}\ge\frac{1}{8}+\frac{7}{16}=\frac{9}{16}\)Đẳng thức xảy ra khi x = y = 1/2

Đặt y=3-x, bài toán trở thành tìm min \(P=x^4+y^4+6x^2y^2\), trong đó x và y là các số thực thỏa mãn hệ \(\int^{x+y=3}_{x^2+y^2=5}\Rightarrow\int^{x^2+y^2+2xy=9}_{x^2+y^2\ge5}\)  \(\Rightarrow\left(x^2+y^2\right)+4\left(x^2+y^2+2xy\right)\ge5+4.9=41\)\(\Rightarrow5\left(x^2+y^2\right)+4\left(2xy\right)\ge41\)Lại có \(16\left(x^2+y^2\right)^2+25\left(2xy\right)^2\ge40\left(x^2+y^2\right)\left(2xy\right)\) (theo bất đẳng thức cosi) (1)Dấu bằng xảy ra...
Đọc tiếp

Đặt y=3-x, bài toán trở thành tìm min \(P=x^4+y^4+6x^2y^2\), trong đó x và y là các số thực thỏa mãn hệ \(\int^{x+y=3}_{x^2+y^2=5}\Rightarrow\int^{x^2+y^2+2xy=9}_{x^2+y^2\ge5}\)  \(\Rightarrow\left(x^2+y^2\right)+4\left(x^2+y^2+2xy\right)\ge5+4.9=41\)

\(\Rightarrow5\left(x^2+y^2\right)+4\left(2xy\right)\ge41\)

Lại có \(16\left(x^2+y^2\right)^2+25\left(2xy\right)^2\ge40\left(x^2+y^2\right)\left(2xy\right)\) (theo bất đẳng thức cosi) (1)

Dấu bằng xảy ra khi \(4\left(x^2+y^2\right)=5\left(2xy\right)\)

Cộng 2 vế của (1) với \(25\left(x^2+y^2\right)^2+16\left(2xy\right)^2\) ta có

\(41\left(\left(x^2+y^2\right)^2+\left(2xy\right)^2\right)\ge\left(5\left(x^2+y^2\right)+4\left(2xy\right)\right)^2\ge41^2\)

\(\Rightarrow\left(x^2+y^2\right)^2+\left(2xy\right)^2\ge41\Leftrightarrow x^4+y^4+6x^2y^2\ge41\)

Vậy min =41, dấu bằng xảy ra khi x=1 hoặc x=2

0
10 tháng 11 2020

Bài 1: 

ĐK: \(x,y\ge-2\)

Ta có: \(\sqrt{x+2}-y^3=\sqrt{y+2}-x^3\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+\frac{x-y}{\sqrt{x+2}+\sqrt{y+2}}=0\)

=> x-y=0=>x=y

Thay y=x vào B ta được:  B=x2+2x+10\(=\left(x+1\right)^2+9\ge9\forall x\ge-2\)

Dấu '=' xảy ra <=> x+1=0=>x=-1 (tmđk)

Vậy Min B =9 khi x=y=-1

9 tháng 8 2020

10x100=