K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2017

xét x,y>=0, thì Áp dụng bđt cô si ta có 

 \(3x+5y\ge2\sqrt{3x.5y}\Rightarrow12\ge2\sqrt{15xy}\)

=> \(\sqrt{15xy}\le6\) => \(15xy\le36\Rightarrow xy\le\frac{12}{5}\)

dấu = xảy ra <=> \(\hept{\begin{cases}3x=5y\\3x+5y=12\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=\frac{6}{5}\end{cases}}}\)

xét x<0 hoặc y<0 thì S <0 nên S max =12/5<=> x=2 và y=6/5

\(\Leftrightarrow\left(\sqrt{x+2022}-\sqrt{y+2022}\right)+\left(x^3-y^3\right)=0\)

=>\(\dfrac{x-y}{\sqrt{x+2022}+\sqrt{y+2022}}+\left(x-y\right)\left(x^2+xy+y^2\right)=0\)

=>x-y=0

=>x=y

P=2x^2-5x^2+x^2+12x+2023

=-2x^2+12x+2023

=-2(x^2-6x-2023/2)

=-2(x^2-6x+9-2041/2)

=-2(x-3)^2+2041<=2041

Dấu = xảy ra khi x=3

19 tháng 5 2019

12=4(x2+y2+xy)= 3(x+y)2+(x-y)2>= 3(x+y)2
=> (x+y)2<=4 => Max, Min

9 tháng 8 2020

100x100=

20 tháng 9 2019

\(P=\sqrt{\frac{1}{36}\left(11a+7b\right)^2+\frac{59\left(a-b\right)^2}{36}}+\sqrt{\frac{1}{36}\left(7a+11b\right)+\frac{59\left(a-b\right)^2}{36}}\)

\(=\sqrt{\frac{1}{16}\left(3a+5b\right)^2+\frac{5\left(a-b\right)^2}{16}}+\sqrt{\frac{1}{16}\left(5a+3b\right)^2+\frac{5\left(a-b\right)^2}{16}}\)

\(\ge\frac{1}{6}\left(11a+7b\right)+\frac{1}{6}\left(7a+11b\right)+\frac{1}{4}\left(3a+5b\right)+\frac{1}{4}\left(5a+3b\right)\)

\(=5\left(a+b\right)=5.2016=10080\)

23 tháng 9 2019

alibaba nguyễn Em kiểm tra lại bài làm của mình nhé! 

18 tháng 5 2018

Với a>0,b>0a>0,b>0 ta luôn có a+b≥2ab−−√a+b≥2ab

M = x2+y2xy=xy+yx=3xy+(x4y+yx)x2+y2xy=xy+yx=3xy+(x4y+yx)

Ta có: (x4y+yx)≥2x4y⋅yx−−−−−−√=1(x4y+yx)≥2x4y⋅yx=1

Mặt khác: x≥2yx≥2y ⇒3x4y≥32⇒3x4y≥32

Do đó M≥52M≥52 . Dâu ''='' xảy ra khi x=2yx=2y

Vậy giá trị nhỏ nhất của M là 5252 ⇔x=2y