Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Ta có: \(\frac{x+2}{y+3}=\frac{2}{3}\Rightarrow3\left(x+2\right)=2\left(y+3\right)\)
\(\Rightarrow3x+6=2y+6\)
\(\Rightarrow3x=2y\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}\)
Đặt \(\frac{x}{2}=\frac{y}{3}=k\)
\(\Rightarrow x=2k,y=3k\)
Lại có: \(A=\frac{x^2+y^2}{xy}=\frac{\left(2k\right)^2+\left(3k\right)^2}{2k3k}=\frac{4k^2+9k^2}{6k^2}=\frac{\left(4+9\right)k^2}{6k^2}=\frac{13}{6}\)
Vậy \(A=\frac{13}{6}\)
Ta có :\(\left(x-1\right)^4\ge0;\left(y+1\right)^4\ge0\)
Mà \(\left(x-1\right)^4+\left(y+1\right)^4=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\y+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\y=-1\end{cases}}\)(1)
Thay (1) vào C ta có :
\(C=1^3+1.\left(-1\right)^3-1^3\left(-1\right)+\left(-1\right)^3\)
\(\Rightarrow C=1-1+1-1=0\)
Vậy...................................
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)
\(\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=4k\end{cases}}\)
.Ta có:\(P=\frac{y+z-x}{x-y+z}=\frac{3k+4k-2k}{2k-3k+4k}=\frac{5k}{3k}=\frac{5}{3}\)
a, \(C=6x^2-3x^2+2\left|x\right|+4\)
\(C=6\cdot\left(-\frac{2}{3}\right)^2-3\left(-\frac{2}{3}\right)^2+2\left|-\frac{2}{3}\right|+4\)
\(C=\left(-\frac{2}{3}\right)^2\left(6-3\right)+\frac{4}{3}+4\)
\(C=\frac{4}{9}\cdot3+\frac{4}{3}+4\)
\(C=\frac{4}{3}+\frac{4}{3}+4\)
\(C=\frac{8}{3}+4\)
\(C=\frac{20}{3}\)
b, \(D=2\left|x\right|-3\left|y\right|\)
\(D=2\left|\frac{1}{2}\right|-3\left|-3\right|\)
\(D=2\cdot\frac{1}{2}-3\cdot3\)
\(D=1-9\)
\(D=-8\)
\(A=x^3-y^3-21xy\)
\(A=\left(x-y\right).\left(x^2+xy+y^2\right)-21xy\)
\(A=7.\left(x^2+xy+y^2\right)-21xy\)
\(A=7.\left(x^2+xy+y^2+3xy\right)\)
\(A=7.\left(x^2+2xy+y^2+2xy\right)\)
\(A=7.\text{[}\left(x+y\right)^2+2xy\text{]}\)
\(A=7.\left(7^2+2xy\right)\)
\(A=7^3+14xy\)
Ngáo rồi @@
\(\)
\(A=x^3-y^3-21xy\)
\(\Rightarrow A=\left(x-y\right)\left(x^2+xy+y^2\right)-21xy\)
\(\Rightarrow A=7\left(x^2+xy+y^2\right)-21xy\)
\(\Rightarrow A=7\left(x^2+xy+y^2-3xy\right)\)
\(\Rightarrow A=7\left(x^2+y^2-2xy\right)\)
\(\Rightarrow A=7\left(x-y\right)^2\)
\(\Rightarrow A=7.7^2\)
\(\Rightarrow A=7.49\)
\(\Rightarrow A=343\)
A=x3-y3-3xy(x-y)=(x-y)3=8
\(A=\left(x^3-y^3\right)-6xy\)
\(A=\left(x-y\right)\left(x^2+xy+y^2\right)-6xy\)
\(A=2x^2+2xy+2y^2-6xy\)
\(A=2x^2-4xy+2y^2=2\left(x-y\right)^2\)
\(A=2.2^2=2.4=8\)