\(15x^3y^3z^3\)t...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2020

a)\(15\cdot2^3\cdot\left(-2\right)^3\cdot3^3=-25920\)

b)\(\frac{-1}{3}\cdot1^2\cdot\left(-\frac{1}{2}\right)^3\cdot\left(-2\right)^3=\frac{-1}{3}\)

c)\(\frac{2}{5}a\cdot\left(-3\right)^3\cdot\left(-1\right)^6\cdot2=\frac{-108}{5}a\)

22 tháng 7 2020

a) Thay x = \(\sqrt{2}\)vào biểu thức ta có : 

\(A=\left(\sqrt{2}+1\right)\left[\left(\sqrt{2}\right)^2-2\right]=\left(\sqrt{2}+1\right).\left(2-2\right)=0\)

Giá trị của A khi x = \(\sqrt{2}\)là 0

b) Ta có \(B=\frac{2x^23x-2}{x+2}=\frac{6x^3-2}{x+2}\)

Thay x = 3 vào B ta có : \(B=\frac{6.3^3-2}{3+2}=\frac{160}{5}=32\)

Giá trị của B khi x = 3 là 32

d) Đặt \(\frac{x}{3}=\frac{y}{5}=k\Rightarrow x=3k;y=5k\)

Khi đó D = \(\frac{5\left(3k\right)^2+3.\left(5k\right)^2}{10\left(3k\right)^2-3\left(5k\right)^2}=\frac{45k^2+75k^2}{90k^2-75k^2}=\frac{120k^2}{15k^2}=8\)

=> D = 8

e) E = \(\left(1+\frac{z}{x}\right)\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)=\frac{x+z}{x}.\frac{x+y}{y}.\frac{y+z}{z}=\frac{\left(x+y\right)\left(x+z\right)\left(y+z\right)}{xyz}\)

Lại có x + y + z = 0

=> x + y = -z

=> x + z = - y 

=> y + z = - x

Khi đó E = \(\frac{-xyz}{xyz}=-1\)

\(\left(a^5b^2xy^2z^{n-1}\right)\left(-\frac{5}{3}ax^5y^2z\right)^3=-\frac{125}{27}.a^8b^2x^{16}y^7z^{n+2}\)

Hệ số \(\frac{-125}{27}\)

Biến : a8b2x16y7zn + 2

22 tháng 7 2020

câu c bạn ghi đề rõ hơn thì mình sẽ giải luôn

6 tháng 3 2018

a)

Ta có \(xy+x^2y^2+x^3y^3+...+x^{10}y^{10}\\ =\left(xy+x^3y^3+x^5y^5+...+x^9y^9\right).\left(x^2y^2+x^4y^4+x^6y^6+...+x^{10}y^{10}\right)\)

Thay x= -1 và y= 1 vào biểu thức trên ta được\(\left(-1\right)1+\left(-1\right)^21^2+...+\left(-1\right)^{10}1^{10}\\ =\left[\left(-1\right)1+\left(-1\right)^31^3+...+\left(-1\right)^91^9\right].\left[\left(-1\right)^21^2+\left(-1\right)^41^4+...+\left(-1\right)^{10}1^{10}\right]\\ =\left(-1-1-...-1\right)+\left(1+1+...+1\right)\\ =-5+5=0\)

b)

Ta có:\(xyz+x^2y^2z^2+x^3y^3z^3+...+x^{10}y^{10}z^{10}\\ =\left(xyz+x^3y^3z^3+x^5y^5z^5+...+x^9y^9z^9\right).\left(x^2y^2z^2+x^4y^4z^4+x^6y^6z^6+...+x^{10}y^{10}z^{10}\right)\)

Thay x=1; y= -1 và z= -1 vào biểu thức trên ta được\(\left(-1\right)\left(-1\right)1+\left(-1\right)^2\left(-1\right)^21^2+...+\left(-1\right)^{10}\left(-1\right)^{10}1^{10}\\ =\left[\left(-1\right)\left(-1\right)1+\left(-1\right)^3\left(-1\right)^31^3+...+\left(-1\right)^9\left(-1\right)^91^9\right].\left[\left(-1\right)^2\left(-1\right)^21^2+\left(-1\right)^4\left(-1\right)^41^4+...+\left(-1\right)^{10}\left(-1\right)^{10}1^{10}\right]\\ =\left(1+1+...+1\right)+\left(1+1+...+1\right)\\ =5+5=10\)

6 tháng 9 2020

Ta có xy+x2y2+x3y3+...+x10y10=(xy+x3y3+x5y5+...+x9y9).(x2y2+x4y4+x6y6+...+x10y10)xy+x2y2+x3y3+...+x10y10=(xy+x3y3+x5y5+...+x9y9).(x2y2+x4y4+x6y6+...+x10y10)

Thay x= -1 và y= 1 vào biểu thức trên ta được(−1)1+(−1)212+...+(−1)10110=[(−1)1+(−1)313+...+(−1)919].[(−1)212+(−1)414+...+(−1)10110]=(−1−1−...−1)+(1+1+...+1)=−5+5=0(−1)1+(−1)212+...+(−1)10110=[(−1)1+(−1)313+...+(−1)919].[(−1)212+(−1)414+...+(−1)10110]=(−1−1−...−1)+(1+1+...+1)=−5+5=0

b)

Ta có:xyz+x2y2z2+x3y3z3+...+x10y10z10=(xyz+x3y3z3+x5y5z5+...+x9y9z9).(x2y2z2+x4y4z4+x6y6z6+...+x10y10z10)xyz+x2y2z2+x3y3z3+...+x10y10z10=(xyz+x3y3z3+x5y5z5+...+x9y9z9).(x2y2z2+x4y4z4+x6y6z6+...+x10y10z10)

Thay x=1; y= -1 và z= -1 vào biểu thức trên ta được(−1)(−1)1+(−1)2(−1)212+...+(−1)10(−1)10110=[(−1)(−1)1+(−1)3(−1)313+...+(−1)9(−1)919].[(−1)2(−1)212+(−1)4(−1)414+...+(−1)10(−1)10110]=(1+1+...+1)+(1+1+...+1)=5+5=10

2 tháng 12 2017

có rảnh 

15 tháng 3 2018

\(-\frac{1}{2016}\\ -1;0;2;3\\1 \)

25 tháng 6 2019

a) Thiếu đề

b) Áp dụng t/c của dãy tỉ số bằng nhau, ta có :

 \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\) => \(\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}=\frac{4x+3y+2z}{4+6+6}=\frac{14}{16}=\frac{7}{8}\)

=> \(\hept{\begin{cases}\frac{x}{1}=\frac{7}{8}\\\frac{y}{2}=\frac{7}{8}\\\frac{z}{3}=\frac{7}{8}\end{cases}}\) => \(\hept{\begin{cases}x=\frac{7}{8}.1=\frac{7}{8}\\y=\frac{7}{8}.2=\frac{7}{4}\\z=\frac{7}{8}.3=\frac{21}{8}\end{cases}}\)

Vậy ...

25 tháng 6 2019

Sửa lại xíu :

 \(a)\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và \(x-2y+3z=14\)

\(b)\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)và \(4x+3y+2z=36\)

14 tháng 3 2024

23 tháng 2 2021

5rxdjexjgntrujnxgr6jexs6ue6thfydjytudcjxtyu45yuej8tuxr5ts

23 tháng 2 2021

hellp

2 tháng 12 2019

Chiều mai mình nộp ạ

Bài 1: Tìm x, y, z thõa mãn các điều kiện sau:\(\frac{5z-6y}{4}=\frac{6x-4z}{5}=\frac{4y-5z}{6}\) và\(3x-2y+5z=96\)Bài 2: Tìm x, y, z thão mãn:a. \(2x=3y=7z\) và  \(x+y+z-13=0\)b. \(\left(x+y\right):\left(5-z\right):\left(y+z\right):\left(7+y\right)=3:1:2:5\)c. \(\frac{x}{y+z-2}=\frac{y}{x+z+1}=\frac{z}{x+y+1}=x+y+z\)d. \(\frac{x-2003}{2}=\frac{y-2004}{6}=\frac{z-2009}{8}\) và \(x+2y-z=4009\)e. \(\frac{x^2}{9}=\frac{y^2}{25}\) và  \(x\cdot...
Đọc tiếp

Bài 1: Tìm x, y, z thõa mãn các điều kiện sau:
\(\frac{5z-6y}{4}=\frac{6x-4z}{5}=\frac{4y-5z}{6}\) và\(3x-2y+5z=96\)

Bài 2: Tìm x, y, z thão mãn:

a. \(2x=3y=7z\) và  \(x+y+z-13=0\)

b. \(\left(x+y\right):\left(5-z\right):\left(y+z\right):\left(7+y\right)=3:1:2:5\)

c. \(\frac{x}{y+z-2}=\frac{y}{x+z+1}=\frac{z}{x+y+1}=x+y+z\)

d. \(\frac{x-2003}{2}=\frac{y-2004}{6}=\frac{z-2009}{8}\) và \(x+2y-z=4009\)

e. \(\frac{x^2}{9}=\frac{y^2}{25}\) và  \(x\cdot y=15\)

f. \(\frac{x^2-y^2}{3}=\frac{y^2+x^2}{-5}=x^{10}\cdot y^{10}=1024\)

g. \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\) và \(x^2+y^2+z^2=14\)

h. \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)

i. \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và \(x\cdot y+y\cdot z+x\cdot z=31\)

k. \(7x=3y:5y=7z\)  và \(x\cdot y+x\cdot z-y\cdot z=4\)

 Bìa 3: Tính 

\(Cho \frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
Tính

\(a. A=\frac{5x+3y}{5y-4z}\)

\(b. B=\frac{x+2y-3z}{3y+2z-5x}\)

\(c. C=\frac{2y-3z}{x+y+z}\)

Bài 4: 

\(Cho \frac{a}{b}=\frac{b}{c}=\frac{c}{a}\) với \(a+b+c\ne0\) và \(a=2011\)
Tính b và 3b-4c

0