Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(xy=12=3.4\Leftrightarrow\frac{x}{y}=\frac{3}{4}\Leftrightarrow4x=3y\Leftrightarrow\frac{x}{3}=\frac{y}{4}\)
Vì các trường hợp Ư(12) khi tính ra x,y đều ra kq giống nhau nên ta chỉ lấy 1 trường hợp là 12=3*4
Áp dụng tc dãy tỉ
\(\frac{x}{3}=\frac{y}{4}=\frac{x+y}{3+4}=\frac{7}{7}=1\)
Với \(\frac{x}{3}=1\Leftrightarrow x=3\)
Với \(\frac{y}{4}=1\Leftrightarrow y=4\)
Suy ra |x-y|=|3-4|=|-1|=1
`a, (x-y)^2 = (x+y)^2 - 4xy = 12^2 - 35 . 4 = 144 - 140 = 4`.
`b, (x+y)^2 = (x-y)^2 + 4xy = 8^2 + 20.4 = 64 + 80 = 144`
`c, x^3 + y^3 = (x+y)^3 - 3xy(x+y) = 5^3 - 3 . 6 . 5 = 125 - 90 = 35`
`d, x^3 - y^3 = (x-y)^3 - 3xy(x-y) = 3^3 - 3 .40 . 3 = 27 - 360 = -333`.
\(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=\left[\left(x+y\right)^2-2xy\right]^2-2\left(xy\right)^2\)
\(=\left(7^2-2.12\right)^2-2.12^2=337\)
(x + y)^2 = 7^2 = 49
x^2 + 2xy + y^2 = 49
x^2 + y^2 + 12 = 49
x^2 + y^2 = 37
( x^2 + y^2 )^2 = 37^2 = 1369
x^4 + 2x^2y^2 + y^4 = 1369
x^4 + y^4 + 2.(xy)^2 = 1369
x^4 + y^4 + 2.12^2 = 1369
x^4 + y^4 + 288 = 1369
x^4 + y^4 = 1081
VẬy A = 1081
Lời giải:
Đặt $xy=a; x+y=b$ thì theo đề ta có:
$a+b=-1$ và $ab=-12$
Ta cần tính: $A=(x+y)^3-3xy(x+y)=b^3-3ab=b^3-3(-12)=b^3+36$
Từ $a+b=-1\Rightarrow a=-b-1$. Thay vào $ab=-12$
$\Rightarrow (-b-1)b=-12$
$\Leftrightarrow (b+1)b=12$
$\Leftrightarrow b^2+b-12=0$
$\Leftrightarrow (b-3)(b+4)=0$
$\Leftrightarrow b=3$ hoặc $b=-4$
Nếu $b=3$ thì $A=3^3+36=63$
Nếu $b=-4$ thì $A=(-4)^3+36=-28$
Ta có: x + y = 7; xy = 12 ;x < y. và (x-y)^2017
=> x=3 và y=4
Ta có:(3-4)^2017=-1^2017
Vì -1 mũ lẻ thì kết quả sẽ là chính số đó nên ta có:
-1^2017=-1
ta có x+y=7 (1)
xy=12 (2)
từ 1 và 2--> x=4 hoặc x=3
y=3 hoăc y=4
rồi thay vào tính
(x+y)2 = x2+y2+2xy = 49 <=> x2+y2-2xy+4xy=49 <=>(x-y)2=49-4xy=49-4.12=1 <=> |x-y|=1
x, y là nghiệm của phương trình t^2 - 7t +12 = 0 => t1 = 3; t2 = 4
x=3 thì y = 4; x= 4 thì y = 3=>|x-y|=1
2 tick cho mình nha