Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*Mình vẽ hình trên GeoGebra nên bạn vào thống kê mình xem*
Xét \(\Delta IDC\) và \(\Delta\)IAB có:
\(\widehat{DIC}=\widehat{AIB}\) (đối đỉnh)
\(\widehat{IDC}=\widehat{IAB}\) (cùng chắn cung BC)
Do đó \(\Delta IDC\)đồng dạng với \(\Delta\)IAB => \(\frac{ID}{IA}=\frac{IC}{IB}=\frac{CD}{AB}\left(1\right)\)
Tương tự ta có: \(\Delta\)IAD đồng dạng \(\Delta\)IBC => \(\frac{IA}{IB}=\frac{ID}{IC}=\frac{DA}{BC}\left(2\right)\)
Từ (1) và (2) ta có: \(\frac{ID}{IB}=\frac{ID}{IA}\cdot\frac{IA}{IB}=\frac{DA\cdot CD}{AB\cdot BC}\)
\(\Rightarrow\frac{ID+IB}{IB}=\frac{AB\cdot BC+DA\cdot CD}{AB\cdot BC}\) hay \(BD=\frac{AB\cdot BC+DA\cdot CD}{AB\cdot BC}\cdot IB\)
mặt khác ta có: \(\frac{IC}{IA}=\frac{IC}{IB}:\frac{IA}{IB}=\frac{BC\cdot CD}{AB\cdot DA}\Rightarrow\frac{IC+IA}{IA}=\frac{AB\cdot DA+BC\cdot CD}{AB\cdot DA}\)
\(\Rightarrow AC=\frac{AB\cdot DA+BC\cdot CD}{AB\cdot DA}\cdot IA\)
Do đó: \(\frac{AC}{BD}=\left(\frac{AB\cdot DA+BC\cdot CD}{AB\cdot DA}\cdot IA\right):\left(\frac{AB\cdot BC+DA\cdot CB}{AB\cdot BC}\cdot IB\right)\Rightarrow\frac{AC}{BD}=\frac{AB\cdot DA+BC\cdot CD}{AB\cdot BC+DA\cdot CD}\)
Do đó:
\(\frac{AB\cdot DA+BC\cdot CD}{AB\cdot BC+DA\cdot CD}\left(max\right)\Leftrightarrow\hept{\begin{cases}AC\left(max\right)\\BD\left(min\right)\end{cases}}\)<=> AC qua O và BD _|_ OI
\(\frac{AB\cdot DA+BC\cdot CD}{AB\cdot BC+DA\cdot CD}\left(min\right)\Leftrightarrow\hept{\begin{cases}AC\left(min\right)\\BD\left(max\right)\end{cases}}\)<=> AC _|_OI vfa BD đi qua O
Câu d: (Thao khảo bất đẳng thức Ptoleme)
Sử dụng tính chất tam giác đồng dạng và bất đẳng thức tam giác.
Dựng điểm sao cho đồng dạng với . Khi đó, theo tính chất của tam giác đồng dạng, ta có:
Suy ra
Mặt khác, và cũng đồng dạng do có
và
Từ đó
Suy ra
Cộng (1) và (2) ta suy ra
Áp dụng bất đẳng thức tam giác ta suy ra:
(đpcm)
a: Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: AB=AC
hay A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
nên O nằm trên đường trung trực của BC(2)
Ta có: HB=HC
nên H nằm trên đường trung trực của BC(3)
Từ (1), (2) và (3) suy ra A,H,O thẳng hàng
a) Ta có: \(AB.sinC+AC.cosC=AB.\dfrac{AB}{BC}+AC.\dfrac{AC}{BC}=\dfrac{AB^2}{BC}+\dfrac{AC^2}{BC}\)
\(=\dfrac{AB^2+AC^2}{BC}=\dfrac{BC^2}{BC}=BC\)
b) Vì \(\angle HEA=\angle HFA=\angle EAF=90\Rightarrow AEHF\) nội tiếp
\(\Rightarrow EF=AH\Rightarrow EF.BC.AE=AH.BC.AE\)
\(=AB.AC.AE\left(AB.AC=AH.BC=2S_{ABC}\right)=AE.AB.AC\)
\(=AH^2.AC=AF.AC.AC=AF.AC^2\)
c) Ta có: \(AH.BC.BE.CF=AB.AC.BE.CF=BE.BA.CF.CA\)
\(=BH^2.CH^2=\left(BH.CH\right)^2=\left(AH^2\right)^2=AH^4\)
\(\Rightarrow AH^3=BC.BE.CF\)
Vì AEHF là hình chữ nhật \(\Rightarrow\left\{{}\begin{matrix}AE=HF\\AF=EH\end{matrix}\right.\)
Vì \(BE\parallel HF\) \(\Rightarrow\angle CHF=\angle CBA\)
Xét \(\Delta BEH\) và \(\Delta HFC:\) Ta có: \(\left\{{}\begin{matrix}\angle BEH=\angle HFC=90\\\angle EBH=\angle FHC\end{matrix}\right.\)
\(\Rightarrow\Delta BEH\sim\Delta HFC\left(g-g\right)\Rightarrow\dfrac{BE}{EH}=\dfrac{HF}{FC}\Rightarrow\dfrac{BE}{AF}=\dfrac{AE}{CF}\)
\(\Rightarrow BE.CF=AE.AF\Rightarrow BC.AE.AF=BC.BE.CF=AH^3\)
a:
Gọi O là trung điểm của AB
Xét (O) có
ΔADB nội tiếp
AB là đường kính
Do đó: ΔADB vuông tại D
=>BD vuông góc AC tại D
Xét (O) có
ΔAEB nội tiếp
AB là đường kính
Do đó: ΔAEB vuông tại E
=>AE vuông góc BC tại E
Xét tứ giác CDHE có
góc CDH+góc CEH=180 độ
=>CDHE nội tiếp
b: Xét ΔCAB có
AE,BD là đường cao
AE cắt BD tại H
=>H là trực tâm
=>CH vuông góc AB tại K
c: Xét ΔAKH vuông tại K và ΔAEB vuông tại E có
góc KAH chung
Do đó: ΔAKH đồng dạng với ΔAEB
=>AK/AE=AH/AB
=>AH*AE=AK*AB
Xét ΔBKH vuông tại K và ΔBDA vuông tại D có
góc KBH chung
Do đó: ΔBKH đồng dạng với ΔBDA
=>BK/BD=BH/BA
=>BK*BA=BH*BD
AH*AE+BH*BD
=AK*AB+BK*BA
=BA^2
a) ....................... =) C, D, H, E cùng thuộc 1 đường tròn.
b) ....................... =) CH ⊥ AB.
c) ....................... =) AH.AE + BH.BD = AB2.