Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔAHB vuông tại H có HE là đường cao
nên \(BE\cdot BA=BH^2\)
Xét ΔAHC vuông tại H có HF là đường cao
nên \(CF\cdot CA=CH^2\)
\(\sqrt{AB\cdot EB}+\sqrt{AC\cdot FC}=HB+HC=BC\)
ABCHcabDEH**Cái tia phân giác là của câu a, không cần để ý nó**
Hình
a, vì \(BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+9^2}=15\)
=> ABC là tam giác vuông (theo định lí Pytago)
b, sin B = 0,6 ; sin C = 0,8 (sin = đối/huyền)
=> \(\dfrac{sinB+sinC}{sinB-sinC}=\dfrac{0,6+0,8}{0,6-0,8}=-7\)
c, AH.BC = AC.AB
=>\(AH=\dfrac{AC.AB}{BC}=\dfrac{9.12}{15}=7,2\)
d: Sửa đề: AN*AB=AM*AC
AN*AB=AH^2
AM*AC=AH^2
Do đó: AN*AB=AM*AC
e: \(\dfrac{BC}{cotB+cotC}=BC:\left(\dfrac{BH}{AH}+\dfrac{CH}{AH}\right)\)
\(=BC\cdot\dfrac{AH}{BC}=AH\)