Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
Gọi O là trung điểm của AB
Xét (O) có
ΔADB nội tiếp
AB là đường kính
Do đó: ΔADB vuông tại D
=>BD vuông góc AC tại D
Xét (O) có
ΔAEB nội tiếp
AB là đường kính
Do đó: ΔAEB vuông tại E
=>AE vuông góc BC tại E
Xét tứ giác CDHE có
góc CDH+góc CEH=180 độ
=>CDHE nội tiếp
b: Xét ΔCAB có
AE,BD là đường cao
AE cắt BD tại H
=>H là trực tâm
=>CH vuông góc AB tại K
c: Xét ΔAKH vuông tại K và ΔAEB vuông tại E có
góc KAH chung
Do đó: ΔAKH đồng dạng với ΔAEB
=>AK/AE=AH/AB
=>AH*AE=AK*AB
Xét ΔBKH vuông tại K và ΔBDA vuông tại D có
góc KBH chung
Do đó: ΔBKH đồng dạng với ΔBDA
=>BK/BD=BH/BA
=>BK*BA=BH*BD
AH*AE+BH*BD
=AK*AB+BK*BA
=BA^2
a) ....................... =) C, D, H, E cùng thuộc 1 đường tròn.
b) ....................... =) CH ⊥ AB.
c) ....................... =) AH.AE + BH.BD = AB2.
a: Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: AB=AC
hay A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
nên O nằm trên đường trung trực của BC(2)
Ta có: HB=HC
nên H nằm trên đường trung trực của BC(3)
Từ (1), (2) và (3) suy ra A,H,O thẳng hàng
b) Ta thấy (O) giao (I) tại 2 điểm B và D => BD vuông góc OI (tại K) => ^OKB=900.
Xét đường tròn (I) đường kính AB có H thuộc cung AB => AH vuông góc HB hay AH vuông góc BC (1)
AB và AC là 2 tiếp tuyến của (O) => \(\Delta\)ABC cân tại A. Mà AO là phân giác ^BAC
=> AO vuông góc BC (2)
Từ (1) và (2) => A;H;O thẳng hàng => ^OHB=900.
Xét tứ giác BOHK: ^OKB=^OHB=900 => Tứ giác BOHK nội tiếp đường tròn đường kính OB
=> ^OKH = ^OBH. Lại có ^OBH=^OAB (Cùng phụ ^HBA) => ^OKH = ^OAB
Hay ^OKH = ^HAI. Mà ^OKH + ^KHI = 1800 nên ^HAI + ^KHI = 1800
=> Tứ giác AIKH nội tiếp đường tròn (đpcm).
b) Dễ thấy OI là trung trực của BD và OI cắt BD tại K => K là trung điểm của BD
\(\Delta\)ABC cân đỉnh A có đường phân giác AH => H là trung điểm BC
Từ đó suy ra HK là đường trung bình của \(\Delta\)BDC
=> HK//CD => ^HKD + ^CDK = 1800 (3). Đồng thời \(\frac{HK}{CD}=\frac{1}{2}\)
Tương tự KI là đường trg bình của \(\Delta\)BAD => KI//AD => ^DKI + ^ADK = 1800 (4) Và \(\frac{IK}{AD}=\frac{1}{2}\)
Cộng (3) với (4) => ^KHD + ^KDI + ^CDK + ^ ADK = 3600
<=> ^HKI = 3600 - (^CDK + ^ADK) => ^HKI = ^CDA.
Xét \(\Delta\)HKI và \(\Delta\)CDA: ^HKI=^CDA; \(\frac{HK}{CD}=\frac{IK}{AD}=\frac{1}{2}\)=> \(\Delta\)HKI ~ \(\Delta\)CDA (c.g.c)
=> ^HIK = ^CAD. Mặt khác: ^CAD = ^DBE (Cùng chắn cung DE) => ^HIK=^DBE.
Mà tứ giác AIKH nội tiếp đường tròn => ^HIK=^HAK = >^DBE=^HAK hay ^KBF=^FAK
=> Tứ giác BKFA nội tiếp đường tròn => Đường tròn ngoại tiếp tam giác ABF đi qua điểm K (đpcm).
a) Xét 2 tam giác ABE và ACF, ta có:
\(\widehat{AEB}=\widehat{ACF}=90^o\) và \(\widehat{A}\) chung
nên \(\Delta ABE~\Delta ACF\left(g.g\right)\) \(\Rightarrow\dfrac{AB}{AC}=\dfrac{AE}{AF}\) \(\Rightarrow AB.AF=AC.AE\) (đpcm)
b) Từ \(AB.AF=AC.AE\Rightarrow\dfrac{AE}{AB}=\dfrac{AF}{AC}\). Từ đó dễ dàng chứng minh \(\Delta AEF~\Delta ABC\left(c.g.c\right)\)
c) Kẻ đường kính AP của (O). Ta có \(\left\{{}\begin{matrix}AB\perp BP\\AB\perp HC\end{matrix}\right.\) \(\Rightarrow\) BP//HC
CMTT, ta có CP//HB, dẫn đến tứ giác BHCP là hình bình hành. Lại có A' là trung điểm BC \(\Rightarrow\) A' cũng là trung điểm HP.
Do đó OA' là đường trung bình của tam giác PAH \(\Rightarrow AH=2A'O\left(đpcm\right)\)
Bất đẳng thức Ptolemy lên đó tự xem đi.
Câu d: (Thao khảo bất đẳng thức Ptoleme)
Sử dụng tính chất tam giác đồng dạng và bất đẳng thức tam giác.
Dựng điểm sao cho đồng dạng với . Khi đó, theo tính chất của tam giác đồng dạng, ta có:
Suy ra
Mặt khác, và cũng đồng dạng do có
và
Từ đó
Suy ra
Cộng (1) và (2) ta suy ra
Áp dụng bất đẳng thức tam giác ta suy ra:
(đpcm)