Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\Rightarrow c=\frac{ab}{a+b}\)
\(a^2+b^2+c^2=\left(a+b\right)^2-2ab+\frac{a^2b^2}{\left(a+b\right)^2}=\frac{\left(a+b\right)^4-2ab\left(a+b\right)^2+a^2b^2}{\left(a+b\right)^2}\)
\(=\frac{\left[\left(a+b\right)^2-ab\right]^2}{\left(a+b\right)^2}\)
\(\Rightarrow\sqrt{a^2+b^2+c^2}=\left|\frac{\left(a+b\right)^2-ab}{a+b}\right|\) là số hữu tỉ.
\(\sqrt{m^2+m+23}\)nguyên dương<=>m2+m+23=k2 (k\(\in\)N*)
4m2+4m+92=4k2<=>(2m+1)2+91=4k2<=>92=(2k-2m-1)(2k+2m+1)
Dễ thấy 2k-2m-1<2k+2m+1 vì m nguyên dương
Thử từng cặp ước nguyên dương của 92 để giải phương trình
Cho a,b,c la cac so thuc t/m (a+2)(b+2)=25/4
Tim gia tri nho nhat cua \(F=\sqrt{1+a^4}+\sqrt{1+b^4}\)
Áp dungj BĐT min-côp-xki, ta có \(\sqrt{1+a^4}+\sqrt{1+b^4}\ge\sqrt{\left(1+1\right)^2+\left(a^2+b^2\right)^2}=\sqrt{4+\left(a^2+b^2\right)^2}\)
Mà \(\left(a+2\right)\left(b+2\right)=\frac{25}{4}\Rightarrow ab+2a+2b=\frac{9}{4}\)
Mà \(a^2+b^2\ge2ab;4a^2+1\ge4a;4b^2+1\ge4b\Rightarrow5\left(a^2+b^2\right)+2\ge\frac{9}{2}\)
=> \(a^2+b^2\ge\frac{1}{2}\)
=> \(F\ge\sqrt{4+\frac{1}{4}}=\frac{\sqrt{17}}{2}\)
Dấu = xảy ra <=> a=b=1/2
^_^