\(\dfrac{AH}{AC}=\dfrac{3}{5}\) và AB=15.Tí...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2017

Hệ thức lượng trong tam giác vuông

13 tháng 6 2018

Hình:

A B C H

~~~~

\(\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow\dfrac{AB^2}{AC^2}=\dfrac{9}{16}\Rightarrow\dfrac{AB^2}{AC^2+AB^2}=\dfrac{9}{25}=\dfrac{AB^2}{AC^2}\)

Có: \(\dfrac{AB^2}{BC^2}=\dfrac{9}{25}\Rightarrow BC^2=AB^2:\dfrac{9}{25}=15^2\cdot\dfrac{25}{9}=625\Rightarrow BC=25\left(cm\right)\)

Áp dụng định lí pitago có:

\(AC=\sqrt{BC^2-AB^2}=\sqrt{25^2-15^2}=20\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác ABC vuông tại A có:

AB . AC = BC . AH => AH = \(\dfrac{AB\cdot AC}{BC}=\dfrac{15\cdot20}{25}=12\left(cm\right)\)

AC2 = BC . HC => HC = \(\dfrac{AC^2}{BC}=\dfrac{20^2}{25}=16\left(cm\right)\)

Vậy..................

28 tháng 8 2018

Một số hệ thức về cạnh và góc trong tam giác vuông

Lap mình hỏng rồi nên mình chụp lên, bạn chịu khó nhìn nha!!!

Chúc bạn học thật tốt!:))

1 tháng 8 2018

A B C H

Đặt \(AB=x\left(cm\right)\left(x>0\right)\)

\(AC=1,4x\left(cm\right)\)

Trong \(\Delta ABC\) có: \(\widehat{A}=90^0\left(gt\right)\)

AH là đường cao ứng với BC (gt)

\(\Rightarrow\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\\ \Rightarrow\dfrac{1}{AH^2}=\dfrac{1}{x^2}+\dfrac{1}{1,96x^2}\\ \Rightarrow\dfrac{74}{49x^2}=\dfrac{1}{225}\\ \Rightarrow\dfrac{74}{49x^2}=\dfrac{1}{225}\\ \Rightarrow49x^2=16650\\ \Rightarrow x^2=\dfrac{16650}{49}\\ \Rightarrow x=18,43\)

Áp dụng định lý \(Py-ta-go\) vào \(\Delta AHB\)

\(\Rightarrow HB^2=\sqrt{AB^2-AH^2}=\sqrt{18,33^2-15^2}=10,54\left(cm\right)\)

Áp dụng định lý \(Py-ta-go\) vào \(\Delta AHC\)

\(\Rightarrow HC^2=\sqrt{AC^2-AH^2}=\sqrt{\left(1,4\cdot18,33\right)^2-15^2}=20,82\left(cm\right)\)

14 tháng 8 2017

@Mới vô help

15 tháng 8 2017

Tại sao, e chỉ ms lp 7 mà bị nhiều người kêu thế

Ta có: \(\dfrac{AB}{AC}=\dfrac{3}{7}\)

nên \(AB=\dfrac{3}{7}AC\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\dfrac{1}{\left(\dfrac{3}{7}AC\right)^2}+\dfrac{1}{AC^2}=\dfrac{1}{42^2}\)

\(\Leftrightarrow\dfrac{1}{\dfrac{9}{49}AC^2}+\dfrac{\dfrac{9}{49}}{\dfrac{9}{49}AC^2}=\dfrac{1}{1764}\)

\(\Leftrightarrow AC^2\cdot\dfrac{9}{49}=2088\)

\(\Leftrightarrow AC^2=11368\)

\(\Leftrightarrow AC=14\sqrt{58}\left(cm\right)\)

\(\Leftrightarrow AB=\dfrac{3}{7}\cdot14\sqrt{58}=6\sqrt{58}\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=\left(6\sqrt{58}\right)^2+\left(14\sqrt{58}\right)^2=13456\)

hay BC=116(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}HB=\dfrac{AB^2}{BC}=\dfrac{\left(6\sqrt{58}\right)^2}{116}=18\left(cm\right)\\CH=\dfrac{AC^2}{CH}=\dfrac{\left(14\sqrt{58}\right)^2}{116}=98\left(cm\right)\end{matrix}\right.\)