Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B H C
Ta có \(\frac{HB}{HC}=\frac{1}{3}\Rightarrow HC=3HB\)
Xét \(\Delta AHB\)có \(AH^2=AB^2-HB^2\Rightarrow144=AB^2-HB^2\left(1\right)\)
Xét \(\Delta AHC\)có \(AH^2=AC^2-HC^2\Rightarrow144=AC^2-HC^2=AC^2-9HB^2\left(2\right)\)
Cộng (1) và (2) ta có \(AB^2-HB^2+AC^2-9HB^2=288\Rightarrow\left(AB^2+AC^2\right)-10HB^2=288\)
\(\Rightarrow BC^2-10HB^2=288\Rightarrow\left(HB+3HB\right)^2-10HB^2=288\Rightarrow HB^2=48\Rightarrow HB=4\sqrt{3}\left(cm\right)\)
\(\Rightarrow HC=3HB=12\sqrt{3}\left(cm\right)\Rightarrow BC=16\sqrt{3}\left(cm\right)\)
Theo hệ thức lượng trong tam giác vuông ta có \(AB^2=HB.BC=4\sqrt{3}.16\sqrt{3}=192\Rightarrow AB=8\sqrt{3}\left(cm\right)\)
\(\Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{576}=24\left(cm\right)\)
Vậy \(BC=16\sqrt{3}cm;AC=24cm;AB=8\sqrt{3}cm\)
Lời giải:
Áp dụng hệ thức lượng trong tam giác vuông đối với tam giác ABC vuông, đường cao AH ta có:
\(AB^2=BH\cdot BC\\ AC^2=CH\cdot BC\\ \Rightarrow\frac{AB^2}{AC^2}=\frac{BH\cdot BC}{CH\cdot BC}=\frac{HB}{HC}\)
\(\Rightarrow\frac{HB}{HC}=\left(\frac{2}{3}\right)^2=\frac{4}{9}\)
\(HB.HC=15^2=225\)
Ta có : \(\hept{\begin{cases}AB^2=BH.BC\\AC^2=CH.BH\end{cases}\Rightarrow\frac{AB^2}{AC^2}=\frac{BH}{CH}\Rightarrow\hept{\begin{cases}\frac{HB}{HC}=\frac{25}{49}\\HB.HC=225\end{cases}\Rightarrow}\hept{\begin{cases}HB.HC.\frac{HB}{HC}=\frac{25}{49}.225\\HB.HC=225\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}HB^2=\frac{5625}{49}\\HB.HC=225\end{cases}\Rightarrow\hept{\begin{cases}HB=\frac{75}{7}\\HC=21\end{cases}}}\)