Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC vuông ở A. Biết \(\frac{AB}{AC}\)=\(\frac{5}{7}\), đường cao AH=15 cm. Tính HB, HC.
A B C H
Có: góc ABC + góc BAH = 900
góc HAC + góc BAH = 900
=> góc ABC = góc HAC
Xét tam giác AHC và tam giác BAC có:
góc ABC = góc HAC (chứng minh trên)
góc AHC = góc BAC (=900)
=> tam giác AHC đồng dạng với tam giác BAC
\(\Rightarrow\frac{AH}{AB}=\frac{HC}{AC}\Rightarrow\frac{AH}{HC}=\frac{AB}{AC}=\frac{5}{7}\Rightarrow HC=\frac{7}{5}.AH=\frac{7}{5}.15=21cm\)
Ta có: \(AH^2=HB.HC\Rightarrow HB=\frac{AH^2}{HC}=\frac{15^2}{21}=\frac{75}{7}cm\)
Vậy HB = 75/7 cm , HC = 21cm
Hình vẽ chung cho cả ba bài.
Bài 1:
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{15^2}+\frac{1}{20^2}=\frac{1}{144}\)
\(\Rightarrow AH^2=144\Rightarrow AH=12\)
\(BH=\sqrt{AB^2-AH^2}=\sqrt{15^2-12^2}=\sqrt{81}=9\)
\(CH=\sqrt{AC^2-AH^2}=\sqrt{20^2-12^2}=\sqrt{256}=16\)
\(\Rightarrow BC=BH+CH=9+16=25\)
Bài 2,3 bạn nhìn hình vẽ và sử dụng hệ thức lượng để tính tiếp như bài 1.
Bài 2: Bài giải
Đặt BH = x (0 < x < 25) (cm) => CH = 25 - x (cm)
Ta có : \(AH^2=BH\cdot CH\text{ }\Rightarrow\text{ }x\left(25-x\right)=144\text{ }\Rightarrow\text{ }x^2-25x+144=0\)
\(\left(x-9\right)\left(x-16\right)=0\text{ }\Rightarrow\orbr{\begin{cases}x=9\\x=16\end{cases}}\left(tm\right)\)
Nếu BH = 9 cm thì CH = 16 cm \(\Rightarrow\text{ }AB=\sqrt{AH^2+BH^2}=\sqrt{9^2+12^2}=15\text{ }\left(cm\right)\)
\(AC=\sqrt{AH^2+CH^2}=\sqrt{12^2+16^2}=20\text{ }\left(cm\right)\)
Nếu BH = 16 cm thì CH = 9 cm
\(\Rightarrow\text{ }AB=\sqrt{AH^2+BH^2}=\sqrt{12^2+16^2}=20\text{ }\left(cm\right)\)
\(AC=\sqrt{AH^2+CH^2}=\sqrt{9^2+12^2}=15\text{ }\left(cm\right)\)
Cho tam giác ABC vuông tại A, phân giác AD, \(\frac{BD}{BC}\)= \(\frac{3}{7}\), BC = 20. Tính AB, AC
Theo bài ra ta có:
\(\frac{BD}{BC}=\frac{3}{7}\Rightarrow\frac{BD}{CD}=\frac{3}{4}\)
Tam giác ABC có phân giác AD
=> \(\frac{AB}{AC}=\frac{BD}{DC}=\frac{3}{4}\)=> Đặt \(AB=3a\)=> \(AC=4a\)
Tam giác ABC vuông tại A
=> \(AB^2+AC^2=BC^2\)
<=> \(\left(3a\right)^2+\left(4a\right)^2=20^2\)
<=> \(9a^2+16a^2=400\)
<=> \(a^2=16\Leftrightarrow a=4\)
=> AB=12; AC =16
AC=AB.tg B
AC= 30.\(\dfrac{8}{15}\)
AC= 16cm
BC2=AB2+AC2
BC2 = 900+256=1156
BC=34cm
Ta có: \(tgB=\dfrac{8}{15}\Rightarrow\dfrac{AC}{AB}=\dfrac{8}{15}\Rightarrow AC=\dfrac{8AB}{15}=\dfrac{8.30}{15}=16\left(cm\right)\)
Xét tam giác ABC vuông tại A có:
\(BC^2=AB^2+AC^2\) ( định lý Pytago)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{30^2+16^2}=34\left(cm\right)\)