Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đoạn thẳng f: Đoạn thẳng [A, B] Đoạn thẳng g: Đoạn thẳng [B, C] Đoạn thẳng h: Đoạn thẳng [A, C] Đoạn thẳng k: Đoạn thẳng [E, M] Đoạn thẳng l: Đoạn thẳng [F, M] A = (-1.14, 6.85) A = (-1.14, 6.85) A = (-1.14, 6.85) B = (-3.22, 3.05) B = (-3.22, 3.05) B = (-3.22, 3.05) C = (4.24, 2.98) C = (4.24, 2.98) C = (4.24, 2.98) Điểm M: Điểm trên g Điểm M: Điểm trên g Điểm M: Điểm trên g Điểm E: Giao điểm của i, f Điểm E: Giao điểm của i, f Điểm E: Giao điểm của i, f Điểm F: Giao điểm của j, h Điểm F: Giao điểm của j, h Điểm F: Giao điểm của j, h
a. Do ME // AC nên \(\frac{ME}{AC}=\frac{BM}{BC}\); MF // AB nên \(\frac{MF}{AB}=\frac{MC}{BC}\)
Từ đó suy ra \(\frac{ME}{AC}+\frac{MF}{AB}=\frac{BM+MC}{BC}=1\) không đổi.
b. Gọi \(\frac{ME}{AC}=t\Rightarrow\frac{MF}{AB}=1-t\Rightarrow S_{ABC}=\frac{a^2}{t^2}=\frac{b^2}{\left(1-t\right)^2}\)
\(\Rightarrow\frac{a}{t}=\frac{b}{1-t}\Rightarrow a\left(1-t\right)=bt\Rightarrow t=\frac{a}{a+b}\Rightarrow t^2=\frac{a^2}{\left(a+b\right)^2}\Rightarrow S_{ABC}=\frac{a^2}{t^2}=\left(a+b\right)^2.\)
c. \(S_{AEMF}=S_{ABC}-S_{BME}-S_{CMF}=\left(a+b\right)^2-a^2-b^2\)
\(=2ab\le a^2+b^2\)
Dấu bằng xảy ra khi a = b, tức là M là trung điểm BC.
Xin lỗi, mình nhầm. Mình xin sửa lại như sau:
....
Từ đó suy ra: \(S_{CML}=S_{ACL}=S_{KCL}-S_{KCA}=2-\frac{1}{2}=\frac{3}{2}\)
\(\Rightarrow S_{KML}=S_{KMC}+S_{KCL}+S_{CML}=\frac{1}{2}+2+\frac{3}{2}=4\)
Theo đầu bài ta có hình sau:
K M L B A C
Bước 1:
Theo đề bài ta có:
\(4\cdot S_{KMB}=S_{KBL}\) ( do MB = 1/4 BL => 4 * MB = BL )
\(\Rightarrow4\cdot\left(S_{KMC}+S_{CMB}\right)=S_{KCL}+S_{CBL}\)
\(\Rightarrow4\cdot S_{KMC}+4\cdot S_{CMB}=S_{KCL}+4\cdot S_{CMB}\) ( do MB = 1/4 BL => 4 * MB = BL )
\(\Rightarrow4\cdot S_{KMC}=2\)
\(\Rightarrow S_{KMC}=\frac{1}{2}\)
Bước 2:
Do \(S_{KCA}=S_{KCL}\cdot\frac{KA}{KL}=2\cdot\frac{1}{4}=\frac{1}{2}\) nên \(S_{KMC}=S_{KCA}\Rightarrow MC=CA\).
Từ đó suy ra: \(S_{CML}=S_{ACL}=S_{KCL}-S_{KCA}=2-\frac{1}{4}=\frac{3}{4}\)
\(\Rightarrow S_{KML}=S_{KMC}+S_{KCL}+S_{CML}=\frac{1}{2}+2+\frac{3}{4}=\frac{13}{4}\)