Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔBCH vuông tại H ta có:
BH2 + HC2 = BC2
122 + HC2 = 152
144 + HC2 = 225
HC2 = 225-144 = 81 = 92
⇔ HC = 9cm
b) Xét ΔBHD vuông tại H ta có:
DH2 + BH2 = DB2
162 + 122 = DB2
256 + 144 = 400 = 202 = DB2 ➜ DB = 20cm
Độ dài cạnh DC là: 16 + 9 = 25 (cm)
Chu vi ΔDBC là: 20 + 15 + 25 = 60 (cm)
Mik cảm ơn bạn nha! Bạn có biết làm câu c ko á? Nếu bik thì làm giúp mik vs!!
a: \(\widehat{B}=90^0\)
Xét ΔABC có \(\widehat{C}< \widehat{A}< \widehat{B}\)
nên AB<BC<AC
b: Xét ΔBAC có
BA<BC
mà AH là hình chiếu của BA trên AC
và CH là hình chiếu của BC trên AC
nên AH<CH
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow AB^2=12^2+16^2=400\)
hay AB=20(cm)
Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:
\(AC^2=AH^2+HC^2\)
\(\Leftrightarrow HC^2=AC^2-AH^2=20^2-12^2=256\)
hay HC=16(cm)
Ta có: BH+HC=BC(H nằm giữa B và C)
nên BC=16+16=32(cm)
Chu vi của tam giác ABC là:
\(C_{ABC}=AB+BC+AC=20+32+20=72\left(cm\right)\)
Lời giải:
Áp dụng định lý Pitago cho tam giác $AHC$ vuông tại $H$:
$HC=\sqrt{AC^2-AH^2}=\sqrt{20^2-12^2}=16$ (cm)
Áp dụng định lý Pitago cho tam giác $AHB$ vuông tại $H$:
$AB=\sqrt{AH^2+BH^2}=\sqrt{12^2+16^2}=20$ (cm)
Chu vi tam giác $ABC$:
$AB+BC+AC=AB+BH+CH+AC=20+16+16+20=72$ (cm)
tam giác AHB vuông tại H ,THEO ĐỊNH LÝ PYTA GO TA CÓ
AB^2=AH^2+BH^2=>AB^2=169=>AB=13 CM
TAM GIÁC AHC VUÔNG TẠI H,THEO ĐỊNH LÝ PYTA GO TA CÓ
HC^2+AH^2=AC^2=>HC^2=AC^2-AH^2=>HC^2=256=>HC=16CM
VÌ H NẰM GIỮA BC => BC=BH+HC=21 CM
=>CHU VI TAM GIÁC ABC LÀ
AB+AC+BC=13+21+20=54 CM