K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2022

a) Xét ΔBCH vuông tại H ta có:

    BH2 + HC2 = BC2

    122 + HC2 = 152

    144 + HC2 = 225

              HC2 = 225-144 = 81 = 92

          ⇔ HC = 9cm

b) Xét ΔBHD vuông tại H ta có:

    DH2 + BH2 = DB2

    162 + 122 = DB2

    256 + 144 = 400 = 202 = DB2 ➜ DB = 20cm

    Độ dài cạnh DC là: 16 + 9 = 25 (cm)

    Chu vi ΔDBC là: 20 + 15 + 25 = 60 (cm)

14 tháng 2 2022

Mik cảm ơn bạn nha! Bạn có biết làm câu c ko á? Nếu bik thì làm giúp mik vs!!

 

2 tháng 2 2021

Viết lại đề !!!

a: \(\widehat{B}=90^0\)

Xét ΔABC có \(\widehat{C}< \widehat{A}< \widehat{B}\)

nên AB<BC<AC

b: Xét ΔBAC có 

BA<BC

mà AH là hình chiếu của BA trên AC

và CH là hình chiếu của BC trên AC
nên AH<CH

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow AB^2=12^2+16^2=400\)

hay AB=20(cm)

Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:

\(AC^2=AH^2+HC^2\)

\(\Leftrightarrow HC^2=AC^2-AH^2=20^2-12^2=256\)

hay HC=16(cm)

Ta có: BH+HC=BC(H nằm giữa B và C)

nên BC=16+16=32(cm)

Chu vi của tam giác ABC là:

\(C_{ABC}=AB+BC+AC=20+32+20=72\left(cm\right)\)

AH
Akai Haruma
Giáo viên
29 tháng 3 2021

Lời giải:

Áp dụng định lý Pitago cho tam giác $AHC$ vuông tại $H$:

$HC=\sqrt{AC^2-AH^2}=\sqrt{20^2-12^2}=16$ (cm)

Áp dụng định lý Pitago cho tam giác $AHB$ vuông tại $H$:

$AB=\sqrt{AH^2+BH^2}=\sqrt{12^2+16^2}=20$ (cm)

Chu vi tam giác $ABC$:

$AB+BC+AC=AB+BH+CH+AC=20+16+16+20=72$ (cm)

15 tháng 2 2016

DỰA VÀO ĐỊNH LÍ pY TA GO

10 tháng 1 2017

chỉ giúp em giải toán với

7 tháng 2 2017

tam giác AHB vuông tại H ,THEO ĐỊNH LÝ PYTA GO TA CÓ

AB^2=AH^2+BH^2=>AB^2=169=>AB=13 CM

TAM GIÁC AHC VUÔNG TẠI H,THEO ĐỊNH LÝ PYTA GO TA CÓ

HC^2+AH^2=AC^2=>HC^2=AC^2-AH^2=>HC^2=256=>HC=16CM

VÌ H NẰM GIỮA BC => BC=BH+HC=21 CM

=>CHU VI TAM GIÁC ABC LÀ

AB+AC+BC=13+21+20=54 CM