Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên tia đối của tia MA lấy điểm K sao cho MK=MA
Xét \(\Delta AMB\) và \(\Delta KMC\) có:
\(AM=MK\)
\(\widehat{AMB}=\widehat{KMC}\left(đ.đ\right)\)
\(MB=MC\)
\(\Rightarrow\Delta AMB=\Delta KMC\left(c.g.c\right)\)
\(\Rightarrow AB=CK\)
Theo BĐT tam giác,ta có:
\(AC+CK>AK\)
\(\Rightarrow AC+AB>2AM\)
\(\Rightarrow AM< \frac{AB+AC}{2}\left(đpcm\right)\)
Bạn tự vẽ hình
Lấy E đối xứng với A qua M
Có M là tđ của AE và BC
nên ABCE là hình bình hành
nên AB=CE
Xét tam giác ACE có AC+CE>AE
suy ra AC+AB>2AM
hay (AC+AB)/2>AM(đpcm)
TK
giả sử N là trung điểm AC
mà M là trung điểm AB ( gt )
=> MN là đường trung bình tam giác ABC
=> MN // BC
Vậy N là trung điểm AC
Lấy \(D\) đối xứng với \(A\) qua \(I\).
Khi đó \(I\) là trung điểm của \(AD\).
\(BC\) cắt \(AD\) tại trung điểm mỗi đường suy ra \(ACDB\) là hình bình hành.
Ta có: \(AB+AC=AB+BC>AD=2AI\) (bất đẳng thức tam giác trong tam giác \(ABD\))
Suy ra đpcm.