\(\s...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1) Cho \(\Delta MNP\)(MN<MP), MI là đường phân giác của \(\Delta MNP\)a. So sánh IN và IPb. Trên tia đối của tia IM lấy điểm A. SO sánh NA và PA.2) Cho \(\Delta ABC\)vuông ở A (AB<AC) có AH là đường cao. So sánh AH+BC và AB+AC.3) CHo \(\Delta ABC\)có góc A=80 độ, góc B=70 độ, AD là đường phân giác của \(\Delta ABC\)a. CM: CD>ABb. Vẽ BH vuông góc với AD (H thuộc AD). CMR: CD=2BH4) CHo \(\Delta ABC\)nhọn, các đường trung...
Đọc tiếp

1) Cho \(\Delta MNP\)(MN<MP), MI là đường phân giác của \(\Delta MNP\)

a. So sánh IN và IP

b. Trên tia đối của tia IM lấy điểm A. SO sánh NA và PA.

2) Cho \(\Delta ABC\)vuông ở A (AB<AC) có AH là đường cao. So sánh AH+BC và AB+AC.

3) CHo \(\Delta ABC\)có góc A=80 độ, góc B=70 độ, AD là đường phân giác của \(\Delta ABC\)

a. CM: CD>AB

b. Vẽ BH vuông góc với AD (H thuộc AD). CMR: CD=2BH

4) CHo \(\Delta ABC\)nhọn, các đường trung tuyến BD, CE vuông góc với nhau. Giả sử AB=6cm, AC=8cm. Tính độ dài BC?

5) Cho \(\Delta ABC\)có đường cao AH (H nằm giữa B và C). CMR

a. Nếu \(\frac{AH}{BH}=\frac{CH}{AH}\)thì \(\Delta ABC\)vuông

b. Nếu \(\frac{AB}{BH}=\frac{BC}{AB}\)thì \(\Delta ABC\)vuông

c. Nếu \(\frac{AB}{AH}=\frac{BC}{AC}\)thì \(\Delta ABC\)vuông

d. Nếu \(\frac{1}{AH^2}=\frac{1}{AB^2}=\frac{1}{AC^2}\)thì \(\Delta ABC\)vuông

0
31 tháng 8 2018

A B C D H M c a d b

Đặt AB=b, AC=a,AD=d vậy ta CM : 1/c+1/b=\(\sqrt{2}\)/d

Từ D hạ DH vuông AC tại H và DM vuông AB tại M, dễ dàng CM được AHDM là hình vuông. => HD=DM=d.sin45 = \(\frac{d}{\sqrt{2}}\) 

Ta có S(ABC) = S(ACD) + S(ABD) 

<=> b.c/2 = HD.b/2 + DM.c/2  <=> bc = \(\frac{bd+cd}{\sqrt{2}}\)<=> \(\sqrt{2}\)bc = bd + cd

Chia 2 vế cho b.c.d ta có pt cần CM

1 tháng 1 2018

Chứng minh vế phải này ; phương pháp đại số nha

\(S_{ABC}=\frac{AB.AC}{2}=1\Rightarrow AB.AC=2\)

Theo pytago Tam giác ABC vuông tại A \(\Rightarrow AB^2+AC^2=BC^2\)

BĐT cần cm : \(BC\le\sqrt{2}\left(AB+AC-\sqrt{2}\right)\)

\(\Leftrightarrow BC\le\sqrt{2}\left(AB+AC\right)-2\)

\(\Leftrightarrow\left(BC+2\right)^2\le2\left(AB+AC\right)^2\)

\(\Leftrightarrow BC^2+4BC+4\le2AB^2+2AC^2+4AB.AC\)

\(\Leftrightarrow AB^2+AC^2+4BC+4\le2AB^2+2AC^2+4.2\)\(AB^2+AC^2=BC^2\)\(AB.AC=2\))

\(\Leftrightarrow4BC\le AB^2+AC^2+4\)

\(\Leftrightarrow4BC\le BC^2+4\)

\(\Leftrightarrow-BC^2+4BC-4\le0\)

\(\Leftrightarrow-\left(BC-2\right)^2\le0\)(Luôn đúng)

Vậy bđt đã được chứng minh

1 tháng 1 2018

vì tam giác ABC vuông tại A =>\(BC^2=AB^2+AC^2\ge2AB.AC=4\) (vì \(S_{ABC}=\frac{AB.AC}{2}\Rightarrow AB.AC=2\) )

\(\Rightarrow BC\ge2\) (ĐPCM)

dấu = xảy ra <=> tam giác ABC vuông cân tại A

^_^

DD
7 tháng 7 2021

\(\sqrt{n+1}-\sqrt{n}=\frac{n+1-n}{\sqrt{n+1}+\sqrt{n}}=\frac{1}{\sqrt{n+1}+\sqrt{n}}\)

\(\sqrt{n+1}+\sqrt{n}>2\sqrt{n}\Leftrightarrow\frac{1}{\sqrt{n+1}+\sqrt{n}}< \frac{1}{2\sqrt{n}}\)

\(\sqrt{n+1}+\sqrt{n}< 2\sqrt{n+1}\Leftrightarrow\frac{1}{\sqrt{n+1}+\sqrt{n}}>\frac{1}{2\sqrt{n+1}}\)

Do đó ta có đpcm.