K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2023


Ta có: tam giác vuông EBH \(\sim\) tam giác vuông ABC (gt)
=>\(\dfrac{S\Delta EBH}{S\Delta ABC}=\left(\dfrac{BH}{BC}\right)^2\Rightarrow\dfrac{\sqrt{S\Delta EBH}}{\sqrt{S\Delta ABC}}=\dfrac{BH}{BC}\left(1\right)\)
Ta có tam giác vuông FHC \(\sim\) tam giác vuông ABC (g.g)
=>\(\dfrac{S\Delta FHC}{S\Delta ABC}=\left(\dfrac{HC}{BC}\right)^2\Rightarrow\dfrac{\sqrt{S\Delta FHC}}{\sqrt{S\Delta ABC}}=\dfrac{HC}{BC}\left(2\right)\)
\(\)Từ (1)và (2) =>\(\dfrac{\sqrt{S\Delta EBH}+\sqrt{S\Delta FHC}}{\sqrt{S\Delta ABC}}=\dfrac{HB+HC}{BC}=\dfrac{BC}{BC}=1\)
Vậy \(\sqrt{S\Delta_{EBH}}+\sqrt{S\Delta_{FHC}}=\sqrt{S\Delta_{ABC}}\left(đpcm\right)\)
chucbanhoctot!

26 tháng 8 2023

thực ra ở đây ko thể c/m đc yêu cầu của bạn đâu, cần phải có AEHF là hcn mới ra cơ ạ 

13 tháng 9 2016

Cô hướng dẫn nhé.

a. Kẻ \(DK\perp BC.\)

Khi đó ta thấy \(IA=IK;DA=DK.\)Lại có \(\Delta HIK\sim\Delta KDC\left(g-g\right)\Rightarrow\frac{IH}{KD}=\frac{IK}{DC}\Rightarrow\frac{IH}{IK}=\frac{KD}{DC}\Rightarrow\frac{IH}{IA}=\frac{DA}{DC}\)

b. Ta có \(BE.AB=BH^2;CF.AC=HC^2\Rightarrow BE.AB.CF.AC=HB^2.HC^2=AH^4\)

\(\Rightarrow BE.CF\left(AB.AC\right)=AH^4\Rightarrow BE.CF.AH.BC=AH^4\Rightarrow BE.CF.BC=AH^3\)

c. Tính \(BE\Rightarrow AE;CF\Rightarrow AC\Rightarrow S_{EHF}\)

25 tháng 8 2018

Gọi I là trung điểm của BC

Xét tam giác ABC vuông tại A có AI là đường trung tuyến nên \(AI=\frac{1}{2}BC\)

Theo quan hệ đường xiên và đường vuông góc ta có \(AH\le AI\Rightarrow AH\le\frac{1}{2}BC\)\(\Rightarrow\frac{AH}{BC}\le\frac{1}{2}\)(1)

Ta có \(\frac{S_{AMN}}{S_{ABC}}=\frac{\frac{1}{2}AM.AN}{\frac{1}{2}AH.BC}=\frac{AH^2}{AH.BC}=\frac{AH}{BC}\)(2)

Từ (1) (2) suy ra \(\frac{S_{AMN}}{S_{ABC}}\le\frac{1}{2}\)

25 tháng 8 2018

rảnh quá ha...ko có gì làm hay sao vậy