\(\frac{AB^2}{BH}=...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2016

Cô hướng dẫn nhé.

a. Kẻ \(DK\perp BC.\)

Khi đó ta thấy \(IA=IK;DA=DK.\)Lại có \(\Delta HIK\sim\Delta KDC\left(g-g\right)\Rightarrow\frac{IH}{KD}=\frac{IK}{DC}\Rightarrow\frac{IH}{IK}=\frac{KD}{DC}\Rightarrow\frac{IH}{IA}=\frac{DA}{DC}\)

b. Ta có \(BE.AB=BH^2;CF.AC=HC^2\Rightarrow BE.AB.CF.AC=HB^2.HC^2=AH^4\)

\(\Rightarrow BE.CF\left(AB.AC\right)=AH^4\Rightarrow BE.CF.AH.BC=AH^4\Rightarrow BE.CF.BC=AH^3\)

c. Tính \(BE\Rightarrow AE;CF\Rightarrow AC\Rightarrow S_{EHF}\)

29 tháng 8 2015

g) Nhớ lại rằng hai tam giác đồng dạng thì tỉ số diện tích bằng bình phương tỉ số đồng dạng.

Ta có   \(\Delta IAB\sim\Delta BAC\to\frac{S\left(IAB\right)}{S\left(ABC\right)}=\left(\frac{AB}{AC}\right)^2.\)

Tương tự \(\Delta BAC\sim\Delta BHA\to\frac{S\left(ABC\right)}{S\left(HBA\right)}=\left(\frac{BC}{BA}\right)^2.\)

Nhân hai đẳng thức với nhau cho ta \(\frac{S\left(IAB\right)}{S\left(ABH\right)}=\left(\frac{BC}{AC}\right)^2=\frac{BC^2}{AC^2}=\frac{BC^2}{BC\cdot CH}=\frac{BC}{CH}\to\frac{S\left(ABH\right)}{S\left(IAB\right)}=\frac{CH}{BC}.\)  (ĐỀ SAI NHÉ)

 

h)  Theo định lý Pi-ta-go ta có

\(BC^2=\left(BH+CH\right)^2=BH^2+CH^2+2BH\cdot CH=BE^2+EH^2+HF^2+FC^2+2AH^2\)

\(=BE^2+CF^2+2AH^2+\left(HE^2+HF^2\right)=BE^2+CF^2+2AH^2+EF^2=BE^2+CF^2+3AH^2.\)

3 tháng 3 2020

câu a với câu e làm sao bạn??