K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2024

a) Ta có MH//AC \(\left(\perp AB\right)\) nên \(\Delta BMH\sim\Delta BAC\)

\(\Rightarrow\dfrac{BM}{BA}=\dfrac{MH}{AC}\) \(\Rightarrow BM.AC=BA.MH\)

Tam giác ABH vuông tại H có đường cao HM 

\(BA.MH=HB.HA\)     

Tương tự, ta có: \(CN.AB=HC.HA\)

Cộng theo vế 2 hệ thức trên, ta được:

\(BA.MH+CN.AB=HB.HA+HC.HA=HA\left(HB+HC\right)=AH.BC\)

Ta có đpcm.

b) Tam giác ABH vuông tại H có đường cao HM nên \(AM.BM=MH^2\).

 Tương tự, ta có \(AN.CN=HN^2\)

 Do đó \(VT=AM.BM+AN.CN=MH^2+HN^2\)

 Dễ thấy tứ giác AMHN là hình chữ nhật nên \(MH^2+HN^2=MN^2=AH^2\)

 Tam giác ABC vuông tại A có đường cao AH nên \(AH^2=BH.CH\)

 Từ đó suy ra \(VT=BH.CH=VP\)

 Vậy đẳng thức được chứng minh.

 c) Xét hệ trục tọa độ Axy với A là gốc tọa độ, \(Ax\equiv AC,Ay\equiv AB\)

 Khi đó đặt \(B\left(0;b\right)\)\(C\left(c;0\right)\)

 Khi đó phương trình đường thẳng \(BC:y=-\dfrac{b}{c}x+b\)

 \(\Rightarrow\) Phương trình đường thẳng \(AH:y=\dfrac{c}{b}x\)

 Khi đó hoành độ của điểm H chính là nghiệm của pt hoành độ giao điểm của AH và BC: \(\dfrac{c}{b}x_0=-\dfrac{b}{c}x_0+b\)

 \(\Leftrightarrow\left(\dfrac{c}{b}+\dfrac{b}{c}\right)x_0=b\) 

 \(\Leftrightarrow\left(\dfrac{c^2+b^2}{bc}\right)x_0=b\) 

 \(\Leftrightarrow x_0=\dfrac{cb^2}{b^2+c^2}\) 

 \(\Rightarrow y_0=\dfrac{c}{b}x_0=\dfrac{c}{b}.\dfrac{cb^2}{b^2+c^2}=\dfrac{bc^2}{b^2+c^2}\)

 Vậy \(H\left(\dfrac{cb^2}{b^2+c^2},\dfrac{bc^2}{b^2+c^2}\right)\)

 Vì M là hình chiếu của H lên trục Oy \(\Rightarrow M\left(0,\dfrac{bc^2}{b^2+c^2}\right)\)

 Tương tự \(\Rightarrow N\left(\dfrac{cb^2}{b^2+c^2},0\right)\)

 Khi đó \(BM=BA-MA=b-\dfrac{bc^2}{b^2+c^2}=\dfrac{b^3+bc^2-bc^2}{b^2+c^2}=\dfrac{b^3}{b^2+c^2}\)

\(CN=CA-NA=c-\dfrac{cb^2}{b^2+c^2}=\dfrac{cb^2+c^3-cb^2}{b^2+c^2}=\dfrac{c^3}{b^2+c^2}\)

 \(\Rightarrow\dfrac{BM}{CN}=\dfrac{\dfrac{b^3}{b^2+c^2}}{\dfrac{c^3}{b^2+c^2}}=\dfrac{b^3}{c^3}=\left(\dfrac{b}{c}\right)^3=\left(\dfrac{AB}{AC}\right)^3\)

 \(\Rightarrow\sqrt[3]{\dfrac{MB}{NC}}=\dfrac{AB}{AC}\) (đpcm)

27 tháng 10 2021

a: AC=16(cm)

AM=10(cm)

27 tháng 10 2021

phần d bạn :,)))

31 tháng 8 2023

a) Tam giác AKB vuông tại K có đường cao KM nên \(AK^2=AM.AB\)

Chứng minh tương tự, ta có \(AK^2=AN.AC\)

Từ đó suy ra \(AM.AB=AN.AC\) (đpcm)

b) Tam giác KMN vuông tại K nên \(KM^2+KN^2=MN^2\)

Dễ thấy tứ giác AMKN là hình chữ nhật, suy ra \(AK=MN\). Từ đó \(KM^2+KN^2=AK^2\).

Tam giác ABC vuông tại A, đường cao AK nên \(AK^2=KB.KC\)

Thế thì \(KM^2+KN^2=KB.KC\) (đpcm)

c) Tam giác AKB vuông tại K, có đường cao KM nên \(AM.BM=KM^2\)

 Tương tự, ta có \(AN.CN=KN^2\)

 Từ đó \(AM.BM+AN.CN=KM^2+KN^2\)

Theo câu b), \(KM^2+KN^2=KB.KC\)

Do đó \(AM.BM+AN.CN=KB.KC\) (đpcm)

 

2 tháng 4 2020

B H C F N M E

a) \(\hept{\begin{cases}\widehat{HFE}=\widehat{HAE}\\\widehat{HAE}+\widehat{ABH}=90^O\end{cases}\Rightarrow\widehat{HFE}+\widehat{ABH}=90^O}\)

=> \(\widehat{HFE}+\widehat{ABC}=90^O\)(đpcm) 

b) AEHF nội tiếp => \(\widehat{AEF}=\widehat{AHF}\)

Mà \(\widehat{AHF}=\widehat{ACB}\)( cùng phụ với \(\widehat{HAC}\)

=> \(\widehat{AEF}=\widehat{ACB}\)

=> BEFC là tứ giác nội tiếp 

\(\Rightarrow\hept{\begin{cases}\widehat{EBF}=\widehat{FCE}\\\widehat{BEM}=\widehat{NFC}=90^O\end{cases}\Rightarrow\widehat{EMB}=\widehat{FNC}}\)

\(\Rightarrow\widehat{EMF}=\widehat{ENF}\)

=> EMNF là tứ giác nội tiếp

=> góc ENM = góc EFB 

Mà BEFC nội tiếp => góc EFB = góc ECB 

Từ 2 điều trên => góc ENM = góc ECB 

=> MN // BC => đpcm