K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6

a) Ta có MH//AC \(\left(\perp AB\right)\) nên \(\Delta BMH\sim\Delta BAC\)

\(\Rightarrow\dfrac{BM}{BA}=\dfrac{MH}{AC}\) \(\Rightarrow BM.AC=BA.MH\)

Tam giác ABH vuông tại H có đường cao HM 

\(BA.MH=HB.HA\)     

Tương tự, ta có: \(CN.AB=HC.HA\)

Cộng theo vế 2 hệ thức trên, ta được:

\(BA.MH+CN.AB=HB.HA+HC.HA=HA\left(HB+HC\right)=AH.BC\)

Ta có đpcm.

b) Tam giác ABH vuông tại H có đường cao HM nên \(AM.BM=MH^2\).

 Tương tự, ta có \(AN.CN=HN^2\)

 Do đó \(VT=AM.BM+AN.CN=MH^2+HN^2\)

 Dễ thấy tứ giác AMHN là hình chữ nhật nên \(MH^2+HN^2=MN^2=AH^2\)

 Tam giác ABC vuông tại A có đường cao AH nên \(AH^2=BH.CH\)

 Từ đó suy ra \(VT=BH.CH=VP\)

 Vậy đẳng thức được chứng minh.

 c) Xét hệ trục tọa độ Axy với A là gốc tọa độ, \(Ax\equiv AC,Ay\equiv AB\)

 Khi đó đặt \(B\left(0;b\right)\)\(C\left(c;0\right)\)

 Khi đó phương trình đường thẳng \(BC:y=-\dfrac{b}{c}x+b\)

 \(\Rightarrow\) Phương trình đường thẳng \(AH:y=\dfrac{c}{b}x\)

 Khi đó hoành độ của điểm H chính là nghiệm của pt hoành độ giao điểm của AH và BC: \(\dfrac{c}{b}x_0=-\dfrac{b}{c}x_0+b\)

 \(\Leftrightarrow\left(\dfrac{c}{b}+\dfrac{b}{c}\right)x_0=b\) 

 \(\Leftrightarrow\left(\dfrac{c^2+b^2}{bc}\right)x_0=b\) 

 \(\Leftrightarrow x_0=\dfrac{cb^2}{b^2+c^2}\) 

 \(\Rightarrow y_0=\dfrac{c}{b}x_0=\dfrac{c}{b}.\dfrac{cb^2}{b^2+c^2}=\dfrac{bc^2}{b^2+c^2}\)

 Vậy \(H\left(\dfrac{cb^2}{b^2+c^2},\dfrac{bc^2}{b^2+c^2}\right)\)

 Vì M là hình chiếu của H lên trục Oy \(\Rightarrow M\left(0,\dfrac{bc^2}{b^2+c^2}\right)\)

 Tương tự \(\Rightarrow N\left(\dfrac{cb^2}{b^2+c^2},0\right)\)

 Khi đó \(BM=BA-MA=b-\dfrac{bc^2}{b^2+c^2}=\dfrac{b^3+bc^2-bc^2}{b^2+c^2}=\dfrac{b^3}{b^2+c^2}\)

\(CN=CA-NA=c-\dfrac{cb^2}{b^2+c^2}=\dfrac{cb^2+c^3-cb^2}{b^2+c^2}=\dfrac{c^3}{b^2+c^2}\)

 \(\Rightarrow\dfrac{BM}{CN}=\dfrac{\dfrac{b^3}{b^2+c^2}}{\dfrac{c^3}{b^2+c^2}}=\dfrac{b^3}{c^3}=\left(\dfrac{b}{c}\right)^3=\left(\dfrac{AB}{AC}\right)^3\)

 \(\Rightarrow\sqrt[3]{\dfrac{MB}{NC}}=\dfrac{AB}{AC}\) (đpcm)

27 tháng 10 2021

a: AC=16(cm)

AM=10(cm)

27 tháng 10 2021

phần d bạn :,)))

31 tháng 8 2023

a) Tam giác AKB vuông tại K có đường cao KM nên \(AK^2=AM.AB\)

Chứng minh tương tự, ta có \(AK^2=AN.AC\)

Từ đó suy ra \(AM.AB=AN.AC\) (đpcm)

b) Tam giác KMN vuông tại K nên \(KM^2+KN^2=MN^2\)

Dễ thấy tứ giác AMKN là hình chữ nhật, suy ra \(AK=MN\). Từ đó \(KM^2+KN^2=AK^2\).

Tam giác ABC vuông tại A, đường cao AK nên \(AK^2=KB.KC\)

Thế thì \(KM^2+KN^2=KB.KC\) (đpcm)

c) Tam giác AKB vuông tại K, có đường cao KM nên \(AM.BM=KM^2\)

 Tương tự, ta có \(AN.CN=KN^2\)

 Từ đó \(AM.BM+AN.CN=KM^2+KN^2\)

Theo câu b), \(KM^2+KN^2=KB.KC\)

Do đó \(AM.BM+AN.CN=KB.KC\) (đpcm)

 

14 tháng 12 2023

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=4,5^2+6^2=7,5^2\)

=>\(BC=\sqrt{7,5^2}=7,5\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot7,5=4,5\cdot6=27\)

=>\(AH=\dfrac{27}{7,5}=3,6\left(cm\right)\)

b: Gọi M là trung điểm của HC

Vì ΔCEH vuông tại E

nên ΔCEH nội tiếp đường tròn đường kính HC

=>ΔCEH nội tiếp (M)

=>ME=MH=MC

Vì ME=MH

nên \(\widehat{MEH}=\widehat{MHE}\)

mà \(\widehat{MHE}=\widehat{ABC}\)(hai góc đồng vị, HE//AB)

nên \(\widehat{MEH}=\widehat{ABC}\)

Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

=>\(\widehat{DAH}=\widehat{DEH}\)

=>\(\widehat{DEH}=\widehat{HAB}\)

\(\widehat{MED}=\widehat{MEH}+\widehat{DEH}\)

\(=\widehat{HBA}+\widehat{HAB}=90^0\)

=>DE là tiếp tuyến của (M)(ĐPCM)

c: Vì ADHE là hình chữ nhật

nên AH cắt DE tại trung điểm của mỗi đường

=>I là trung điểm chung của AH và DE

Xét ΔHAC có

I,M lần lượt là trung điểm của HA,HC

=>IM là đường trung bình của ΔHAC

=>\(IM=\dfrac{AC}{2}=\dfrac{6}{2}=3\left(cm\right)\)

14 tháng 12 2023

tui c.ơn nhiều

21 tháng 3 2021

a, Ta có: $HM⊥AB;HN⊥AC$

$⇒\widehat{HMA}=\widehat{HNA}=90^o$

$⇒\widehat{HMA}+\widehat{HNA}=180^o$

$⇒$ Tứ giác $AMHN$ nội tiếp (Tổng 2 góc đối $=180^o$)
b, Xét tam giác $AHB$ vuông tại $H$
Đường cao $HM$ (do $HM⊥AB$)

Nên $AH^2=AM.AB(1)$

Xét tam giác $AHC$ vuông tại $H$
Đường cao $HN$ (do $HN⊥AB$)

Nên $AH^2=AN.AC(2)$

Từ $(1)(2)⇒AM.AB=AN.AC$
$⇒\dfrac{AM}{AC}=\dfrac{AN}{AB}$

Xét tam giác $AMN$ và tam giác $ACB$ có:

$\dfrac{AM}{AC}=\dfrac{AN}{AB}$
$\widehat{A}$ chung

$⇒$  tam giác $AMN$ $\backsim$ tam giác $ACB(c.g.c)$

(đpcm)

c,  tam giác $AMN$ $\backsim$ tam giác $ACB$

$⇒\widehat{ANM}=\widehat{ABC}$

Xét $(O)$ có: $\widehat{ABC}=\widehat{AEC}$ (các góc nội tiếp cùng chắn cung $AC$)

Nên $\widehat{ANM}=\widehat{AEC}$

Hay  $\widehat{ANI}=\widehat{IEC}$

$⇒$ Tứ giác $CEIN$ nội tiếp (góc ngoài tại 1 đỉnh = góc trong đỉnh đối diện)

c, Ta có: $\widehat{ANM}=\widehat{ABC}$

Mà $\widehat{ABC}+\widehat{AKC}=180^o$

do tứ giác $ABCK$ nội tiếp $(O)$

Nên $\widehat{ANM}+\widehat{AKC}=180^o$

Mà $\widehat{ANM}+\widehat{ANK}=180^o$

Nên $\widehat{AKC}=\widehat{ANK}$

Xét tam giác $AKC$ và tam giác $ANK$ có:

$\widehat{AKC}=\widehat{ANK}$

$\widehat{A}$ chung

nên  tam giác $AKC$ $\backsim$ tam giác $ANK(g.g)$

$⇒\dfrac{AK}{AN}=\dfrac{AC}{AK}$

$⇒AK^2=AN.AC$

mà $AH^2=AN.AC(cmt)$

$⇒AK^2=AH^2$

hay $AK=AH$

suy ra tam giác $AHK$ cân tại $A$undefined

 

21 tháng 3 2021

Nguyễn Lê Phước Thịnh

Akai Haruma     Trần Đức Mạnh  Nguyễn Việt Lâm

27 tháng 10 2021

Xét tứ giác AMHN có 

\(\widehat{AMH}=\widehat{ANH}=\widehat{NAM}=90^0\)

Do đó: AMHN là hình chữ nhật

Suy ra: AH=MN

31 tháng 10 2021

Oke ạ, may quá em làm đúng rồi ❤