K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2021

a, Ta có: $HM⊥AB;HN⊥AC$

$⇒\widehat{HMA}=\widehat{HNA}=90^o$

$⇒\widehat{HMA}+\widehat{HNA}=180^o$

$⇒$ Tứ giác $AMHN$ nội tiếp (Tổng 2 góc đối $=180^o$)
b, Xét tam giác $AHB$ vuông tại $H$
Đường cao $HM$ (do $HM⊥AB$)

Nên $AH^2=AM.AB(1)$

Xét tam giác $AHC$ vuông tại $H$
Đường cao $HN$ (do $HN⊥AB$)

Nên $AH^2=AN.AC(2)$

Từ $(1)(2)⇒AM.AB=AN.AC$
$⇒\dfrac{AM}{AC}=\dfrac{AN}{AB}$

Xét tam giác $AMN$ và tam giác $ACB$ có:

$\dfrac{AM}{AC}=\dfrac{AN}{AB}$
$\widehat{A}$ chung

$⇒$  tam giác $AMN$ $\backsim$ tam giác $ACB(c.g.c)$

(đpcm)

c,  tam giác $AMN$ $\backsim$ tam giác $ACB$

$⇒\widehat{ANM}=\widehat{ABC}$

Xét $(O)$ có: $\widehat{ABC}=\widehat{AEC}$ (các góc nội tiếp cùng chắn cung $AC$)

Nên $\widehat{ANM}=\widehat{AEC}$

Hay  $\widehat{ANI}=\widehat{IEC}$

$⇒$ Tứ giác $CEIN$ nội tiếp (góc ngoài tại 1 đỉnh = góc trong đỉnh đối diện)

c, Ta có: $\widehat{ANM}=\widehat{ABC}$

Mà $\widehat{ABC}+\widehat{AKC}=180^o$

do tứ giác $ABCK$ nội tiếp $(O)$

Nên $\widehat{ANM}+\widehat{AKC}=180^o$

Mà $\widehat{ANM}+\widehat{ANK}=180^o$

Nên $\widehat{AKC}=\widehat{ANK}$

Xét tam giác $AKC$ và tam giác $ANK$ có:

$\widehat{AKC}=\widehat{ANK}$

$\widehat{A}$ chung

nên  tam giác $AKC$ $\backsim$ tam giác $ANK(g.g)$

$⇒\dfrac{AK}{AN}=\dfrac{AC}{AK}$

$⇒AK^2=AN.AC$

mà $AH^2=AN.AC(cmt)$

$⇒AK^2=AH^2$

hay $AK=AH$

suy ra tam giác $AHK$ cân tại $A$undefined

 

21 tháng 3 2021

Nguyễn Lê Phước Thịnh

Akai Haruma     Trần Đức Mạnh  Nguyễn Việt Lâm

10 tháng 11 2023

A B C H E F M N

a/

Ta có

\(\widehat{A}=90^o;\widehat{MHN}=90^o\) => A và H cùng nhìn MN dưới 1 góc vuông nên A; H thuộc đường tròn đường kính MN => A; M; H; N cùng thuộc 1 đường tròn

Xét tg vuông AHC có

\(MA=MC\Rightarrow HM=MA=MC=\dfrac{AC}{2}\) (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)

=> tg AMH cân tại M \(\Rightarrow\widehat{MAH}=\widehat{MHA}\)

 \(\widehat{NAH}+\widehat{MAH}=\widehat{A}=90^o\)

\(\widehat{NHA}+\widehat{MHA}=\widehat{MHN}=90^o\)

\(\Rightarrow\widehat{NAH}=\widehat{NHA}\) => tg NAH cân tại N => NA=HN (1)

Xét tg vuông ABH có

\(\widehat{NAH}+\widehat{B}=90^o\)

\(\widehat{NHA}+\widehat{NHB}=\widehat{AHB}=90^o\)

Mà \(\widehat{NAH}=\widehat{NHA}\) (cmt)

\(\Rightarrow\widehat{B}=\widehat{NHB}\) => tg BHN cân tại N => NB=HN (2)

Từ (1) và (2) => NA=NB => N là trung điểm AB

b/

Ta có

NA=NB (cmt); MA=MC (gt) => MN là đường trung bình của tg ABC

=> MN//BC

Gọi O là giao của MN với AH. Xét tg ABH có

MN//BC => NO//BH

NA=NB (cmt)

=> OA=OH (trong tg đường thẳng đi qua trung điểm 1 cạnh và // với 1 cạnh thì đi qua trung điểm cạnh còn lại) => O à trung điểm AH

Ta có

\(HE\perp AB\left(gt\right);AC\perp AB\left(gt\right)\) => HE//AC => HE//AF

\(HF\perp AC\left(gt\right);AB\perp AC\left(gt\right)\) => HF//AB => HF//AN

=> AEHF là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

Gọi O' là giao của EF với AH => O'A=O'H (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường) => O' là trung điểm của AH

Mà O cũng là trung điểm của AH (cmt)

=> \(O'\equiv O\) => AH; MN; EF cùng đi qua O

 

 

 

27 tháng 10 2021

b: \(AN\cdot AC=AH^2\)

\(AC^2-HC^2=AH^2\)

Do đó: \(AN\cdot AC=AC^2-HC^2\)

27 tháng 10 2021

mình cần phần d

11 tháng 10 2023

a: ΔABC vuông tại A

=>\(BC^2=AB^2+AC^2\)

=>\(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\BH\cdot BC=AB^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=\dfrac{9\cdot12}{15}=7.2\left(cm\right)\\BH=\dfrac{9^2}{15}=5.4\left(cm\right)\end{matrix}\right.\)

b:

ΔAHB vuông tại H có HD là đường cao

nên \(HD\cdot AB=HA\cdot HB\)

ΔAHC vuông tại H có HE là đường cao

nên \(HE\cdot AC=HA\cdot HC\)

 \(HD\cdot AB+HE\cdot AC\)

\(=HA\cdot HB+HA\cdot HC=HA\cdot\left(HB+HC\right)\)

\(=HA\cdot BC=AB\cdot AC\)

c: Xét tứ giác ADHE có \(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

ΔABC vuông tại A có AM là trung tuyến

nên AM=MB=MC

\(\widehat{IEA}+\widehat{IAE}=\widehat{DEA}+\widehat{IAC}\)

\(=\widehat{DHA}+\widehat{MCA}\)

\(=\widehat{ABC}+\widehat{ACB}=90^0\)

=>AM vuông góc DE tại I

ΔADE vuông tại A có AI là đường cao

nên \(\dfrac{1}{AI^2}=\dfrac{1}{AE^2}+\dfrac{1}{AD^2}\)

27 tháng 10 2021

a: AC=16(cm)

AM=10(cm)

27 tháng 10 2021

phần d bạn :,)))

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:

\(AE\cdot AB=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:

\(AF\cdot AC=AH^2\)(2)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

hay \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Xét ΔAEF và ΔACB có 

\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)(cmt)

\(\widehat{EAF}\) chung

Do đó: ΔAEF\(\sim\)ΔACB(c-g-c)

Suy ra: \(\widehat{AFE}=\widehat{ABC}\)

13 tháng 11 2021

a: BC=8cm

\(\widehat{C}=30^0\)

\(\widehat{B}=60^0\)

Xét ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)