Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB,ta được:
\(AM\cdot AB=AH^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC, ta được:
\(AN\cdot AC=AH^2\)(2)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
b) Xét tứ giác AMHN có
\(\widehat{NAM}=90^0\)
\(\widehat{ANH}=90^0\)
\(\widehat{AMH}=90^0\)
Do đó: AMHN là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
Suy ra: AH=MN
Ta có: \(AM\cdot AB+AN\cdot AC\)
\(=AH^2+AH^2\)
\(=2AH^2=2\cdot MN^2\)
Lời giải:
Áp dụng HTL trong tam giác vuông với tam giác $AHB, AHC$:
$AM.AB=AH^2$
$AN.AC=AH^2$
Do đó nếu muốn cm $AM.AB=AB^2-AN.AC$ thì:
$AH^2=AB^2-AH^2$
$\Leftrightarrow 2AH^2=AB^2$
Cái này thì không có cơ sở để cm. Bạn coi lại đề.
\(a,\text{Áp dụng PTG:}BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \text{Áp dụng HTL:}\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\AH=\dfrac{AB\cdot AC}{BC}=4,8\left(cm\right)\end{matrix}\right.\\ b,\text{Áp dụng HTL:}\left\{{}\begin{matrix}AM\cdot AB=AH^2\\AN\cdot AC=AH^2\end{matrix}\right.\\ \Rightarrow AM\cdot AB=AN\cdot AC\)
a: BC=BH+CH
=4+9=13
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
=>\(AH^2=4\cdot9=36\)
=>AH=6
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{4\cdot13}=2\sqrt{13}\\AC=\sqrt{9\cdot13}=3\sqrt{13}\end{matrix}\right.\)
b: ΔHAB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
ΔHAC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1), (2) suy ra \(AM\cdot AB=AN\cdot AC\)
a: Xét (O) có
ΔAHM nội tiếp
AH là đường kính
=>ΔAMH vuông tại M
Xét (O) có
ΔANH nội tiếp
AH là đường kính
=>ΔANH vuông tại N
ΔHAB vuông tại H có HM là đường cao
nên AM*AB=AH^2
ΔHCA vuông tại H có HN là đường cao
nên AN*AC=AH^2
b: Xét tứ giác AMHN có
góc AMH=góc ANH=góc MAN=90 độ
=>AMHN là hình chữ nhật
=>góc ANM=góc AHM=góc ABC
=>góc MBC+góc MNC=180 độ
=>NMBC là tứ giác nội tiếp
a, xét \(\Delta ABC\) vuông tại A áp dụng hệ thức lượng\(=>AC^2=CH.BC=>HC=\dfrac{AC^2}{BC}=\dfrac{12^2}{15}=9,6cm\)
\(=>HB=BC-HC=15-9,6=5,4cm\)
áp dụng Pytago trong \(\Delta AHC\) vuông tại H
\(=>HA=\sqrt{AC^2-HC^2}=\sqrt{12^2-9,6^2}=7,2cm\)
\(b,\) do E,F là hình chiếu vuông góc của H lần lượt lên AB, AC
\(=>\left\{{}\begin{matrix}EH\perp AB\\HF\perp AC\end{matrix}\right.\) mà \(\Delta AHB\) và \(\Delta AHC\) lần lượt vuông góc tại H
theo hệ thức lượng
\(=>\left\{{}\begin{matrix}AH^2=AE.AB\\AH^2=AF.AC\end{matrix}\right.\)=>\(AE.AB=AF.AC\)
c, do E,F là hình chiếu vuông góc của H lần lượt lên AB, AC
=> tứ giác EHFA là hình chữ nhật\(=>AE=HF< =>HF^2=AE^2\)
áp dụng pytago trong \(\Delta EHA\) vuông tại E
\(=>HE^2+AE^2=AH^2< =>HE^2+HF^2=AH^2\)(1)
theo hệ thức lượng trong tam giác ABC vuông tại A đường cao AH
\(=>AH^2=HB.HC\left(2\right)\)
(1)(2)=>\(HE^2+HF^2=HB.HC\)
a) Tam giác AKB vuông tại K có đường cao KM nên \(AK^2=AM.AB\)
Chứng minh tương tự, ta có \(AK^2=AN.AC\)
Từ đó suy ra \(AM.AB=AN.AC\) (đpcm)
b) Tam giác KMN vuông tại K nên \(KM^2+KN^2=MN^2\)
Dễ thấy tứ giác AMKN là hình chữ nhật, suy ra \(AK=MN\). Từ đó \(KM^2+KN^2=AK^2\).
Tam giác ABC vuông tại A, đường cao AK nên \(AK^2=KB.KC\)
Thế thì \(KM^2+KN^2=KB.KC\) (đpcm)
c) Tam giác AKB vuông tại K, có đường cao KM nên \(AM.BM=KM^2\)
Tương tự, ta có \(AN.CN=KN^2\)
Từ đó \(AM.BM+AN.CN=KM^2+KN^2\)
Theo câu b), \(KM^2+KN^2=KB.KC\)
Do đó \(AM.BM+AN.CN=KB.KC\) (đpcm)