Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=20^2-12^2=256\)
=>AC=16(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot20=12\cdot16=192\)
=>AH=9,6(cm)
Xét ΔABC vuông tại A có
\(sinABC=\dfrac{AC}{BC}=\dfrac{4}{5}\)
nên \(\widehat{ABC}\simeq53^0\)
b: Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\)(1) và \(AN\cdot NC=HN^2\)
ΔAHC vuông tại H
=>\(HA^2+HC^2=AC^2\)
=>\(AH^2=AC^2-HC^2\left(2\right)\)
Từ (1) và (2) suy ra \(AN\cdot AC=AC^2-HC^2\)
c: Xét tứ giác AMHN có \(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)
nên AMHN là hình chữ nhật
=>AH=MN
Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot MB=HM^2\)
\(AM\cdot AB+AN\cdot NC\)
\(=HM^2+HN^2\)
\(=MN^2=AH^2\)
d: \(\dfrac{BM}{CN}=\dfrac{BH^2}{AB}:\dfrac{CH^2}{AC}\)
\(=\dfrac{BH^2}{CH^2}\cdot\dfrac{AC}{AB}\)
\(=\left(\dfrac{AB^2}{BC}:\dfrac{AC^2}{BC}\right)^2\cdot\dfrac{AC}{AB}\)
\(=\left(\dfrac{AB}{AC}\right)^4\cdot\dfrac{AC}{AB}=\left(\dfrac{AB}{AC}\right)^3=tan^3C\)

b: \(AN\cdot AC=AH^2\)
\(AC^2-HC^2=AH^2\)
Do đó: \(AN\cdot AC=AC^2-HC^2\)

a: ΔAHB vuông tại H có HM là đường cao
nên AM*MB=HM^2
ΔAHC vuông tại H có HN là đường cao
nên AN*NC=NH^2
Xét tứ giác AMHN có
góc AMH=góc ANH=góc MAN=90 độ
=>AMHN là hình chữ nhật
=>MN^2=HM^2+HN^2
=AM*MB+AN*NC
b: ΔABC vuông tạiA có AH là đường cao
nên \(AB^2=BH\cdot BC;AC^2=CH\cdot CB\)
=>\(\dfrac{AB^2}{AC^2}=\dfrac{BH\cdot BC}{CH\cdot BC}=\dfrac{BH}{CH}\)

c: Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

Sửa đề: Chứng minh \(\frac{S_{ABI}}{S_{AMN}}=\frac{1}{2\cdot\sin^2B}+\frac{1}{2cos^2HAC}\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC;AB^2=BH\cdot BC;AC^2=CH\cdot CB\)
Ta có: \(\frac{1}{2\cdot\sin^2B}+\frac{1}{2cos^2HAC}\)
\(=\frac{1}{2\cdot\sin^2B}+\frac{1}{2\cdot cos^2B}=\frac12\left(\frac{1}{\sin^2B}+\frac{1}{cos^2B}\right)\)
\(=\frac12\cdot\frac{\sin^2B+cos^2B}{\left(\sin B\cdot cosB\right)^2}=\frac12\cdot\frac{1}{\left(\sin B\cdot cosB\right)^2}\)
\(=\frac12\cdot\frac{1}{\left(\frac{AC}{BC}\cdot\frac{AB}{BC}\right)^2}=\frac12\cdot\frac{1}{\left(\frac{AB\cdot AC}{BC^2}\right)^2}=\frac12\cdot\left(\frac{1}{\frac{AH\cdot BC}{BC^2}}\right)^2\)
\(=\frac12\cdot\left(\frac{BC}{AH}\right)^2\) (2)
Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\)
=>\(AM=\frac{AH^2}{AB}\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AH^2=AN\cdot AC\)
=>\(AN=\frac{AH^2}{AC}\)
ΔABC có AH là đường cao
nên \(S_{ABC}=\frac12\cdot AH\cdot BC\)
ΔAMN vuông tại A
=>\(S_{AMN}=\frac12\cdot AM\cdot AN=\frac12\cdot\frac{AH^2}{AB}\cdot\frac{AH^2}{AC}=\frac12\cdot\frac{AH^4}{AH\cdot BC}=\frac12\cdot\frac{AH^3}{BC}\)
=>\(\frac{S_{AMN}}{S_{ABC}}=\frac{AH^3}{2\cdot BC}:\frac{AH\cdot BC}{2}=\frac{AH^3}{2\cdot BC}\cdot\frac{2}{AH\cdot BC}=\frac{AH^2}{BC^2}\)
=>\(\frac{S_{ABC}}{S_{AMN}}=\frac{BC^2}{AH^2}\)
I là trung điểm của BC
=>\(\frac{BI}{BC}=\frac12\)
=>\(S_{ABC}=2\cdot S_{ABI}\)
Ta có: \(\frac{S_{ABC}}{S_{AMN}}=\frac{BC^2}{AH^2}\)
=>\(\frac{2\cdot S_{ABI}}{S_{AMN}}=\frac{BC^2}{AH^2}\)
=>\(\frac{S_{ABI}}{S_{AMN}}=\frac{BC^2}{2AH^2}=\frac12\cdot\left(\frac{BC}{AH}\right)^2\) (1)
Từ (1),(2) suy ra \(\frac{S_{ABI}}{S_{AMN}}=\frac{1}{2\cdot\sin^2B}+\frac{1}{2cos^2HAC}\)