Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B H C
Theo hệ thức lượng trong tam giác vuông ta có \(AB^2=BH.BC\Rightarrow3^2=\left(BC-HC\right).BC\Rightarrow BC^2-3,2.BC-9=0\)
\(\Leftrightarrow\orbr{\begin{cases}BC=5\\BC=-\frac{9}{5}\left(l\right)\end{cases}\Leftrightarrow BC=5\left(cm\right)}\)
Theo định lí PItago ta có \(AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)
Ta có \(AH=\frac{AB.AC}{BC}=\frac{3.4}{5}=2,4\left(cm\right)\)
3 3,2 A B C H 1 2 1 2 1
Xét tam giác ABH và tam giác AHC có:
góc H1= góc H2(=90o)
góc A1= góc C1(Phụ góc A2)
\(\Rightarrow\)\(\Delta ABH\Omega\Delta AHC\left(g.g\right)\)
\(\Rightarrow\frac{AB}{AH}=\frac{AH}{HC}\Rightarrow AH^2=AB.HC=3.3,2=9,6\)
\(\Rightarrow AH=\sqrt{9,6}\approx3,1\left(cm\right)\)
Vây AH=3,1cm
Lời giải:
Theo công thức hệ thức lượng trong tam giác vuông ta có:
$AB^2=BH.BC$
$\Leftrightarrow AB^2=BH(BH+CH)$
$\Leftrightarrow 3^2=BH(BH+3,2)$
$\Leftrightarrow BH^2+3,2BH-9=0$
$\Rightarrow BH=1,8$ (chọn) hoặc $BH=-5$ (loại)
Vậy $BH=1,8$ cm
$BC=BH+CH=1,8+3,2=5$
Áp dụng định lý Pitago: $AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-3^2}=4$ (cm)
\(HC=\dfrac{3^2}{4}=2.25\left(cm\right)\)
BC=HB+HC=6,25(cm)
AM=BC/2=3,125(cm)
\(AB=\sqrt{4\cdot6.25}=5\left(cm\right)\)
\(AC=\sqrt{6.25^2-5^2}=3.75\left(cm\right)\)
+ ) áp dụng định lí Pytago trong tam giác vuông \(ABH\) vuông tại \(H\) , ta có :
\(AB^2=AH^2+HB^2=3^2+4^2=25\Rightarrow AB=5\left(cm\right)\)
+ ) áp dụng hệ thức về cạnh và đường cao trong tam giác vuông \(ABC\) với \(AH\) là đường cao , ta có :
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
\(\Leftrightarrow\) \(\dfrac{1}{AC^2}=\dfrac{1}{AH^2}-\dfrac{1}{AB^2}\)
\(\Leftrightarrow\) \(\dfrac{1}{AC^2}=\dfrac{1}{3^2}-\dfrac{1}{5^2}=\dfrac{16}{225}\)
\(\Rightarrow AC=\dfrac{15}{4}\left(cm\right)\)
+ ) áp dụng định lí Pytago trong tam giác vuông \(ABC\) vuông tại \(A\) , ta có :
\(BC^2=AB^2+AC^2=5^2+\left(\dfrac{15}{4}\right)^2=\dfrac{625}{16}\)
\(\Rightarrow BC=\dfrac{25}{4}\left(cm\right)\)
+ ) tam giác \(ABC\) vuông tại \(A\) có trung tuyến \(AM\) nên ta có :
\(AM=\dfrac{1}{2}BC=\dfrac{25}{8}\left(cm\right)\)
A B C H M
Xét tam giác ABH vuông tại H, ta có:
\(AB^2=AH^2+BH^2\)\(=3^2+4^2=25\)
\(\Rightarrow AB=5\left(cm\right)\)
Xét tam giác ABC vuông tại A, theo hệ thức lượng ta có:
\(AH^2=AB\cdot AC\Rightarrow AC=\dfrac{AH^2}{AB}=\dfrac{3^2}{5}=1,8\left(cm\right)\)
Do đó:\(BC=\sqrt{AB^2+AC^2}=\sqrt{5^2+1,8^2}\simeq5,3\left(cm\right)\)
AM là đường trung tuyến trong tam giác vuông ABC
=> AM=\(\dfrac{1}{2}\) BC= 2,65 \(\left(cm\right)\)
Ta có: H thuộc BC ( gt )
=> BC=BH+HC
mà BH=3,2 cm ( gt )
=> BC=3,2+HC
<=>HC=BC-3,2
Xét tam giác ABC có: Góc BAC=90 độ
AH vuông góc vs BC ( gt )
=> AC^2=HC.BC ( hệ thức luợng trong tam giác vuông )
mà HC=BC-3,2 ( cmt )
BH=3,2 cm ( gt )
AC=3 cm ( gt )
=> 3^2=( BC-3,2 ).BC
...... ( bạn tự nhân ra rồi phân tích đa thức thành nhân tử nhé! )
<=> BC=5 cm
mà HC=BC-3,2
=> HC=5-3,2=1,8 cm
Xét tam giác AHC có: Góc AHC=90 độ ( AH vuông góc voiws BC - gt )
=> AH^2+HC^2=AC^2 ( định lý Pytago thuận )
mà HC=1,8 cm ( cmt )
AC= 3 cm ( gt )
=> AH^2+1,8^2=3^2
.... ( bạn tự tính nhé! )
<=> AH= 2,4 cm