K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2018

A B C D M

a) Xét hai tam giác AMB và tam giác DMC có:

         MB = MC (M là trung điểm của BC)

         \(\widehat{BMA}=\widehat{CMD}\left(đ-đ\right)\)

         MA = MD (gt)

\(\Rightarrow\Delta AMB=\Delta DMC\left(c-g-c\right)\)

=> AB = CD (hai cạnh tương ứng)

b) Xét hai tam giác BMD và CMA có:

      MB = MC (gt)

      \(\widehat{BMD}=\widehat{CMA}\left(đ-đ\right)\)

       MA = MD (gt)

\(\Rightarrow\Delta BMD=\Delta CMA\left(c-g-c\right)\)

\(\Rightarrow\widehat{MBD}=\widehat{MCA}\) (Hai góc tương ứng)

=> BD // AC

c) Ta có: AB vuông góc với AC (tam giác ABC vuông tại A)

              BD // AC (cm ở câu b)

=> AB vuông góc với BD

=> \(\widehat{ABD}=90^0\)

21 tháng 7 2018

A B C M D

a) Nối B và D lại

Xét tứ giác ABCD có 

BM=MC (M là trung điểm của BC)

AM=MC (gt)

=>Tứ giác ABCD là hình bình hành

Do đó AB=CD

b)Ta có tứ giác ABCD là hình bình hành

=> BD // AC

c) Xét hình bình hành ABCD có

\(\widehat{A}=90^0\)

=>ABCD là hình chữ nhật

Vậy \(\widehat{ABD}=90^0\)

a: Xét tứ giác ABCD có

M là trung điểm chung của AC và BD

=>ABCD là hbh

=>AB=CD và AB//CD
b: AB//CD

AB vuông góc AC

=>CD vuông góc AC

c: ABCD là hbh

=>BC//AD

a: Xét ΔMAB và ΔMDC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔMAB=ΔMDC

b: Xét tứ giác ABDC có 

M là trung điểm của AD

M là trung điểm của BC

Do đó: ABDC là hình bình hành

Suy ra: AB//CD

14 tháng 12 2023

a: Xét ΔMAB và ΔMDC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔMAB=ΔMDC
b: Xét ΔMAC và ΔMDB có

MA=MD

\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)

MC=MB

Do đó: ΔMAC=ΔMDB

=>\(\widehat{MAC}=\widehat{MDB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AC//BD

c: ΔMAB=ΔMDC

=>\(\widehat{MBA}=\widehat{MCD}\)

Xét ΔABH vuông tại H và ΔDCK vuông tại K có

AB=DC

\(\widehat{ABH}=\widehat{DCK}\)

Do đó: ΔABH=ΔDCK

=>BH=CK

BH+HK=BK

CK+HK=CH

mà BH=CK

nen BK=CH

d: Xét tứ giác ABCE có

I là trung điểm chung của AC và BE

=>ABCE là hình bình hành

=>AB//CE và AB=CE

Ta có: AB//CE

AB//CD

CD,CE có điểm chung là C

Do đó: C,E,D thẳng hàng

Ta có: AB=EC

AB=CD

Do đó: EC=CD

mà C,E,D thẳng hàng

nên C là trung điểm của DE

24 tháng 12 2020

góc C nào bạn

 

24 tháng 12 2020

a) ta có △ABC vuông tại A=>góc ABC +góc BCA=90 độ

                                        30 độ+góc BCA=90 độ

                                                  góc BCA=90 độ -30 độ=60 độ

vậy góc BCA = 60 độ

b)Xét △CMD và△BMA có 

CM=MB (Vì M là trung điểm của BC)

góc CMD= góc BMA( 2 góc đối đỉnh )

MA=MD( giả thiết)

=> △CMD =△BMA(c-g-c) hay  △MAB=△MDC

vậy  △ MAB=△MDC

b) ta có △ MAB=△MDC(chứng minh câu a)

=> CD=AB;  góc CDM= góc MAB( 2 góc tương ứng)

hay góc CDA=góc DAB mà 2 góc này là 2 góc so le trong của đường thẳng AD cắt 2 đường thẳng CD và AB

=> CD//AB

ta có MA+MD=AD

MC+MB=BC 

mà MD=MA(giả thiết)

MC=MB( Vì M là trung điểm của BC)

=>AD=BC 

Xét △ACD và △CAB có 

AD=BC(chứng minh trên )

góc ADC= góc CBA

CD=AB(chứng minh trên)

=>△ACD = △CAB( c-g-c)

=> góc CAB=góc ACD

mà góc CAB=90 độ(vì △ ABC vuông tại A)

=>góc ACD=90 độ

=>AC⊥CD  

vậy AC⊥CD  

  c)ta có BC =AD( chứng minh câu b)

mà AM=MD(giả thiết) 

và MC=MB( Vì M là trung điểm của BC)

=>AM=\(\dfrac{BC}{2}\) =>BC=2.AM

vậy BC=2AM

16 tháng 3 2020

a, tam giác ABC vuông tại A (gt) => BC^2 = AC^2 + AB^2 (pytago)

BC = 10; AB = 8 (Gt)

=> AC^2 = 10^2 - 8^2

=> AC^2 = 36

=> AC = 6 do AC > 0

b, xét tam giác AMB và tam giác DMC có : AM = MD (gt)

BM = MC do M là trung điểm của BC(gt)

^BMA = ^DMC (đối đỉnh)

=> tam giác AMB = tam giác DMC (c-g-c)

=> ^ABM = ^MCD mà 2 góc này slt

=> AB // CD 

AB _|_ AC

=> CD _|_ AC 

c, xét tam giác ACE có : AH _|_ AE 

AH = HE

=> tam giác ACE cân tại C 

d, xét tam giác BMD và tam giác CMA có L BM = MC

AM = MD

^BMD = ^CMA

=> tam giác BMD = tam giác CMA (c-g-c)

=> BD = AC

AC = CE do tam giác ACE cân tại C (câu c)

=> BD = CE