K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2016

A B C D M

a) Xét ΔAMB và ΔDMC có:

MA=MD(gt)

\(\widehat{AMB}=\widehat{DMC}\left(đđ\right)\)

MB=MC(gt)

=> ΔAMB=ΔDMC(c.g.c)

b)Vì: ΔAMB=ΔDMC(cmt)

=> AB=DC ; \(\widehat{ABC}=\widehat{DCB}\)

Xét ΔABC và ΔDCB có:

BC: cạnh chung

\(\widehat{ABC}=\widehat{DCB}\left(cmt\right)\)

AB=DC(cmt)

=> ΔABC=ΔDCB(c.g.c)

=>AC=BD

\(\widehat{ACB}=\widehat{DBC}\) . Mà hai góc này ở vị trí sole trong

=>AC//BD

Vì: ΔABC=ΔDCB(cmt)

=> \(\widehat{BAC}=\widehat{CDB}=90^o\)

11 tháng 3 2020

a) Xét tam giác  ABM   và tam giác  DCM có 

+ BM=CM ( gt)

+ Góc AMB = góc DMC ( đối đỉnh)

+ AM = DM

=> tam giác ABM = tam giác DCM ( c-g-c)

 b) Vì tam giác ABM = tam giác DCM

=> góc BAM = Góc CDM ( 2 góc tương ứng ) 

Ta có : Góc BAM = Góc CDM ( c/m trên)

Mà  góc BAM + CAM = 180độ( 2 góc kề bù )   (1)

      góc CDM + BDM = 180độ ( 2 góc kề bù )  (2)

Mà góc BAM = góc CDM 

Từ (1) và (2) => Góc CAM = góc BDM

Xét tam giác ACM và tam giác BDM có 

+ Góc CAM = BDM ( c/m trên)

+ BM = CM ( gt)

+ góc BMD = góc AMC ( đối đỉnh )

=> Tam giác ACM = tam giác BDM ( g.c.g)

=> AC = BD ( 2 cạnh tương ứng)

c)  bạn tự làm ạ . Mình bận

11 tháng 3 2020

A B C D M

a) +) Xét \(\Delta\)ABM và \(\Delta\)DCM có

BM =  CM ( gt)

\(\widehat{AMB}=\widehat{CMD}\) ( 2 góc đối đỉnh )

AM = DM ( gt)

=> \(\Delta\)ABM = \(\Delta\)DCM ( c-g-c)

b) +) Xét \(\Delta\)AMC và \(\Delta\)DMB có

AM = DM ( gt)
\(\widehat{AMC}=\widehat{BMD}\)  ( 2 góc đối đỉnh )

MC = MB ( gt)

=>  \(\Delta\)AMC = \(\Delta\)DMB ( c-g-c)

=> AC = DB ( 2 cạnh tương ứng )

và \(\widehat{ACM}=\widehat{DBM}\) ( 2 góc tương ứng )
Mà 2 góc này ở vị trí so le trong

=> AC // BD

c) +) Theo câu a ta có  \(\Delta\)ABM = \(\Delta\)DCM

=> \(\widehat{ABM}=\widehat{DCM}\) ( 2 góc tương ứng )

+) Xét \(\Delta\)ABC và \(\Delta\)DCB có

\(\widehat{ABM}=\widehat{DCM}\)  ( cmt)

BC : cạnh chung

\(\widehat{ACM}=\widehat{DBM}\) ( cmt) 

=> \(\Delta\)ABC = \(\Delta\)DCB (g-c-g)

=> \(\widehat{BAC}=\widehat{CDB}\) ( 2 góc tương ứng )

Mà \(\widehat{BAC}=90^o\) ( gt)

=> \(\widehat{CDB}=90^o\)

Học tốt

Takigawa Maraii

30 tháng 12 2021

b: Xét tứ giác ABDC có 

M là trung điểm của AD

M là trung điểm của BC

Do đó: ABDC là hình bình hành

Suy ra: AC=BD

9 tháng 11 2017

a) Xét tam giác AMB và tam giác CMD 

 có: - MD=MA(gt)

       -góc DMC=góc BMA ( hai góc đối đỉnh)

       - MB=MC(gt)

=> tam giác AMB= tam giác DMC(c.g.c)

9 tháng 11 2017

xét tam giác AMB và tam giác CMD có

BM=MC (gt)

góc AMB =CMD( đối đỉnh)

AM=MD(gt)
=> tam giác AMB= CMD( C.g.c)

b, tứ giác ABDC có MB=MC=MA=MD => ABDC là hình bình hành 

=> AC=BD và AC//BD

c, tứ giác ABDC là hình bình hành

=> góc A =góc C =90 độ

25 tháng 10 2017

A B C M D

a) Tam giác AMB = tam giác CMD theo trường hợp C.G.C 

b) Tứ giác ABDC là hình bình hành vì có hai đường chéo AD và BC cắt nhau ở trung điểm mỗi đường.

   Suy ra AC song song và bằng BD

c) Do ABDC là hình bình hành và góc A bằng 1 vuông nên ABDC là hình chữ nhật => Tam giác ABC = tam giác DCB

=> Góc BDC = 1 vuông

1. Cho tia Ot là tia phân giác của góc xOy nhọn. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Trên tia Oy lấy điểm H sao cho OH > OAa) Chứng minh: Tam giác OAH = tam giác OBHb) Tia AH cắt Oy tại M, tia BH catứ tia Ox tại N. Chứng minh tam giác OAM = tam giác OBNc) Chứng minh AB vuông góc với OHd) Gọi K là trung điểm của MN. Chứng minh: K thuộc tia Ot2. Cho góc nhọn xAy. Trên tia Ax lấy B. Trên tia Ay lấy C...
Đọc tiếp

1. Cho tia Ot là tia phân giác của góc xOy nhọn. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Trên tia Oy lấy điểm H sao cho OH > OA

a) Chứng minh: Tam giác OAH = tam giác OBH

b) Tia AH cắt Oy tại M, tia BH catứ tia Ox tại N. Chứng minh tam giác OAM = tam giác OBN

c) Chứng minh AB vuông góc với OH

d) Gọi K là trung điểm của MN. Chứng minh: K thuộc tia Ot

2. Cho góc nhọn xAy. Trên tia Ax lấy B. Trên tia Ay lấy C sao cho AB - AC. Kẻ BH vuông góc AC (H thuộc AC) và CK vuông góc AB (K thuộc AB)

a) Chứng minh góc ABH = góc ACK

b) BH cắt CK tại E. Chứng minh AE vuông góc BC

c) Tam giác ABC phải thoả mãn điều kiện gì để E là điểm cách đều 3 cạnh ?

3. Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA

a) Chứng minh: Tam giác AMB = tam giác DMC

b) Chứng minh: AC = BD và AC //BD

c) Chứng minh: Tam giác ABC = tam giác DCB. Tính số đo góc BDC

4. Cho tam giác ABC vuông tại A có góc ABC = 60 độ

a) Tính số đo góc ACB

b) Trên tia đối của tia AC lấy điểm D sao cho AD = AC. Chứng minh tam giác ABD = tam giác ABC

c) Vẽ tia Bx là tia phân giác của góc ABC. Qua C vẽ đường thẳng vuông góc với AC, cắt tia Bx tại E. Chứng minh AC = 1/2 BE

2
1 tháng 8 2016

Võ Hùng Nam hảo hảo a~

Bài 3: 

a: Xét ΔAMB và ΔDMC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔAMB=ΔDMC

b: Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD
Do đó: ABDC là hình bình hành

Suy ra:AC//BD và AC=BD

c: Xét ΔABC và ΔDCB có 

AB=DC

\(\widehat{ABC}=\widehat{DCB}\)

BC chung

Do đó: ΔABC=ΔDCB

Suy ra: \(\widehat{BAC}=\widehat{CDB}=90^0\)

16 tháng 3 2020

a, tam giác ABC vuông tại A (gt) => BC^2 = AC^2 + AB^2 (pytago)

BC = 10; AB = 8 (Gt)

=> AC^2 = 10^2 - 8^2

=> AC^2 = 36

=> AC = 6 do AC > 0

b, xét tam giác AMB và tam giác DMC có : AM = MD (gt)

BM = MC do M là trung điểm của BC(gt)

^BMA = ^DMC (đối đỉnh)

=> tam giác AMB = tam giác DMC (c-g-c)

=> ^ABM = ^MCD mà 2 góc này slt

=> AB // CD 

AB _|_ AC

=> CD _|_ AC 

c, xét tam giác ACE có : AH _|_ AE 

AH = HE

=> tam giác ACE cân tại C 

d, xét tam giác BMD và tam giác CMA có L BM = MC

AM = MD

^BMD = ^CMA

=> tam giác BMD = tam giác CMA (c-g-c)

=> BD = AC

AC = CE do tam giác ACE cân tại C (câu c)

=> BD = CE