Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMAB và ΔMDC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔMAB=ΔMDC
b: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
Suy ra: AB//CD
a: Xét ΔMAB và ΔMDC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC
Do đó: ΔMAB=ΔMDC
b: Xét ΔMAC và ΔMDB có
MA=MD
\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)
MC=MB
Do đó: ΔMAC=ΔMDB
=>\(\widehat{MAC}=\widehat{MDB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AC//BD
c: ΔMAB=ΔMDC
=>\(\widehat{MBA}=\widehat{MCD}\)
Xét ΔABH vuông tại H và ΔDCK vuông tại K có
AB=DC
\(\widehat{ABH}=\widehat{DCK}\)
Do đó: ΔABH=ΔDCK
=>BH=CK
BH+HK=BK
CK+HK=CH
mà BH=CK
nen BK=CH
d: Xét tứ giác ABCE có
I là trung điểm chung của AC và BE
=>ABCE là hình bình hành
=>AB//CE và AB=CE
Ta có: AB//CE
AB//CD
CD,CE có điểm chung là C
Do đó: C,E,D thẳng hàng
Ta có: AB=EC
AB=CD
Do đó: EC=CD
mà C,E,D thẳng hàng
nên C là trung điểm của DE
a) Xét hai tam giác AMB và tam giác DMC có:
MB = MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{CMD}\left(đ-đ\right)\)
MA = MD (gt)
\(\Rightarrow\Delta AMB=\Delta DMC\left(c-g-c\right)\)
=> AB = CD (hai cạnh tương ứng)
b) Xét hai tam giác BMD và CMA có:
MB = MC (gt)
\(\widehat{BMD}=\widehat{CMA}\left(đ-đ\right)\)
MA = MD (gt)
\(\Rightarrow\Delta BMD=\Delta CMA\left(c-g-c\right)\)
\(\Rightarrow\widehat{MBD}=\widehat{MCA}\) (Hai góc tương ứng)
=> BD // AC
c) Ta có: AB vuông góc với AC (tam giác ABC vuông tại A)
BD // AC (cm ở câu b)
=> AB vuông góc với BD
=> \(\widehat{ABD}=90^0\)
a) Nối B và D lại
Xét tứ giác ABCD có
BM=MC (M là trung điểm của BC)
AM=MC (gt)
=>Tứ giác ABCD là hình bình hành
Do đó AB=CD
b)Ta có tứ giác ABCD là hình bình hành
=> BD // AC
c) Xét hình bình hành ABCD có
\(\widehat{A}=90^0\)
=>ABCD là hình chữ nhật
Vậy \(\widehat{ABD}=90^0\)
a: Xét tứ giác ABCD có
M là trung điểm chung của AC và BD
=>ABCD là hbh
=>AB=CD và AB//CD
b: AB//CD
AB vuông góc AC
=>CD vuông góc AC
c: ABCD là hbh
=>BC//AD
a: Xét ΔABM và ΔDCM có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔABM=ΔDCM
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC
Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABDC là hình chữ nhật
Suy ra: AB//DC và AB=DC; \(\widehat{ACD}=90^0\)
b:
Ta có: ABDC là hình chữ nhật
nên AD=BC
XétΔBCA và ΔDAC có
BC=DA
CA chung
BA=DC
Do đó: ΔBCA=ΔDAC
a: Xét ΔAMB và ΔDMC có
MA=MD
MB=MC
Do đó: ΔAMB=ΔDMC
Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
mà
nên ABDC là hình chữ nhật
Suy ra: AB//DC và AB=DC;
b:
Ta có: ABDC là hình chữ nhật
nên AD=BC
XétΔBCA và ΔDAC có
BC=DA
CA chung
BA=DC
Do đó: ΔBCA=ΔDAC
a: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra: AB//CD
b: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
Suy ra: AC=BD